Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Repair and replacement costs of water pipes. Refer to the IHS Journal of Hydraulic Engineering (September 2012) study of water pipes, Exercise 11.21 (p. 655). Refer, again, to the Minitab simple linear regression printout (p. 655) relating y = the ratio of repair to replacement cost of commercial pipe to x = the diameter (in millimeters) of the pipe.

a. Locate the value of s on the printout.

b. Give a practical interpretation of s.

Short Answer

Expert verified
  1. S is 14.7849.
  2. It is preferable if it is small.

Step by step solution

01

Introduction

The standard error of the mean is the most commonly reported kind of standard error (SE or SEM). The standard error can also be used to find other statistics, such as medians or proportions. The standard error is a metric that measures the difference between a population parameter and a sample statistic.

02

Find s

\(\begin{aligned}S{S_{xy}} &= \sum {{x_i}} {y_i} - \frac{{\sum {{x_i}} \sum {{y_i}} }}{n}\\ &= 36,849.15 - \frac{{4205 x 106.94}}{{13}}\\ &= 36,849.15 - \frac{{449682.5}}{{13}}\\ &= \frac{{479038.95 - 34590.98}}{{13}}\end{aligned}\)

\(\begin{aligned} &= \frac{{444447.97}}{{13}}\\ &= 34188.30\end{aligned}\)

\(\begin{aligned} S{S_{xx}} &= {\sum {{x_i}} ^2} - \frac{{{{\left( {\sum {{x_i}} } \right)}^2}}}{n}\\ &= 1832025 - \frac{{{{\left( {4205} \right)}^2}}}{{13}}\\ &= 1832025 - \frac{{17682025}}{{13}}\\ &= \frac{{23816325 - 17682025}}{{13}}\end{aligned}\)

\(\begin{aligned} &= \frac{{6134300}}{{13}}\\ &= 471869.23\end{aligned}\)

\(\begin{aligned}\widehat {{\beta _1}} &= \frac{{S{S_{xy}}}}{{S{S_{xx}}}}\\ &= \frac{{34188.30}}{{471869.23}}\\ &= 0.07\end{aligned}\)

\(\begin{aligned} S{S_{yy}} &= \sum {y^2} - \frac{{{{\left( {\sum y} \right)}^2}}}{n}\\ &= 891.049 - \frac{{{{\left( {106.94} \right)}^2}}}{{13}}\\ &= 891.049 - \frac{{11436.1636}}{{13}}\\ &= \frac{{11583.637 - 11436.1636}}{{13}}\end{aligned}\)

\(\begin{aligned} &= \frac{{147.4734}}{{13}}\\ &= 11.3441\end{aligned}\)

\(\begin{aligned}SSE &= S{S_{yy}} - \widehat {{\beta _1}}S{S_{xy}}\\ &= 11.3441 - (0.07)(34188.30)\\ &= 11.3441 + 2393.181\\ &= 2404.5251\end{aligned}\)

\(\begin{aligned} {s^2} &= \frac{{SSE}}{{n - 2}}\\ &= \frac{{2404.5251}}{{13 - 2}}\\ &= \frac{{2404.5251}}{{11}}\\ &= 218.5932\end{aligned}\)

\(\begin{aligned}s &= \sqrt {{s^2}} \\ &= \sqrt {218.5932} \\ &= 14.7849\end{aligned}\)

Therefore, the value of s is 14.7849.

03

Provide a practical interpretation of s

A practical interpretation of s shows the variation in predicted values. It is preferable if it is small.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If a straight-line probabilistic relationship relates the mean E(y) to an independent variable x, does it imply that every value of the variable y will always fall exactly on the line of means? Why or why not?

Software millionaires and birthdays. Refer to Exercise 11.23 (p. 655) and the study of software millionaires and their birthdays. The data are reproduced on p. 663.

a. Find SSE s2and s for the simple linear regression model relating the number (y) of software millionaire birthdays in a decade to the total number (x) of U.S. births.

b. Find SSE s2and s for the simple linear regression model relating the number (y) of software millionaire birthdays in a decade to the number (x) of CEO birthdays.

c. Which of the two models' fit will have smaller errors of prediction? Why?

Decade

Total U.S. Births (millions)

Number of Software Millionaire Birthdays

Number of CEO Birthdays (in a random sample of 70 companies from the Fortune 500 list)

1920

28.582

3

2

1930

24.374

1

2

1940

31.666

10

23

1950

40.530

14

38

1960

38.808

7

9

1970

33.309

4

0

Generation Yโ€™s entitlement mentality. The current workforce is dominated by โ€œGeneration Yโ€โ€”people born between 1982 and 1999. These workers have a reputation as having an entitlement mentality (e.g., they believe they have a right to a high-paying job, without the work ethic). The reasons behind this phenomenon were investigated in Proceedings of the Academy of Educational Leadership (Vol. 16, 2011). A sample of 272 undergraduate business students was administered a questionnaire designed to capture the behaviors that lead to an entitlement mentality. The responses were used to measure the following two quantitative variables for each student: entitlement score (y)โ€”where higher scores indicate a greater level of entitlement, and โ€œhelicopter parentsโ€ score (x)โ€”where higher scores indicate that the studentโ€™s parents had a higher level of involvement in his or her everyday experiences and problems.

a. Give the equation of a simple linear regression model relating y to x.

b. The researchers theorize that helicopter parents lead to an entitlement mentality. Based on this theory, would you expect ฮฒ0 to be positive or negative (or are you unsure)? Would you expect ฮฒ1 to be positive or negative (or are you unsure)? Explain.

c. The p-value for testing H0: ฮฒ0 = 0 versus Ha: ฮฒ1> 0 was reported as .002. Use this result to test the researchersโ€™ entitlement theory at ฮฑ = .01.

Time in bankruptcy. Financially distressed firms can gain protection from their creditors while they restructure by filing for protection under U.S. Bankruptcy Codes. In a prepackaged bankruptcy, a firm negotiates a reorganization plan with its creditors prior to filing for bankruptcy. This can result in a much quicker exit from bankruptcy than traditional bankruptcy filings. A study of 49 prepackaged bankruptcies was published in Financial Management (Spring 1995). For each firm, information was collected on the time (in months) in bankruptcy as well as the results of the board of directorsโ€™ vote on the type of reorganization plan. Three types of plans were studied: โ€œJointโ€โ€”a joint exchange offer with prepackaged bankruptcy solicitation; โ€œPrepackโ€โ€”prepackaged bankruptcy solicitation only; and โ€œNoneโ€โ€”no pre-filing vote held. The data for the 49 firms is provided in the accompanying table

a. Construct a stem-and-leaf display for the length of time in bankruptcy for all 49 companies.

b. Summarize the information reflected in the stem-and-leaf display from part a. Make a general statement about the length of time in bankruptcy for firms using โ€œprepacks.โ€

c. Select a graphical method that will permit a comparison of the time-in-bankruptcy distributions for the three types or reorganization plans.

d. Firms that were reorganized through a leveraged buyout are identified by an asterisk in the table. Mark these firms on the stem-and-leaf display, part a, by circling their bankruptcy times. Do you observe any pattern in the graph? Explain

Refer to Exercise 11.3. Find the equations of the lines that pass through the points listed in Exercise 11.1.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free