Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Fecal pollution at Huntington Beach. California mandates fecal indicator bacteria monitoring at all public beaches. When the concentration of fecal bacteria in the water exceeds a certain limit (400 colony-forming units of fecal coliform per 100 millilitres), local health officials must post a sign (called surf zone posting) warning beachgoers of potential health risks. For fecal bacteria, the state uses a single-sample standard; if the fecal limit is exceeded in a single sample of water, surf zone posting is mandatory. This single-sample standard policy has led to a recent rash of beach closures in California. A study of the surf water quality at Huntington Beach in California was published in Environmental Science & Technology (September 2004). The researchers found that beach closings were occurring despite low pollution levels in some instances, while in others, signs were not posted when the fecal limit was exceeded. They attributed these "surf zone posting errors" to the variable nature of water quality in the surf zone (for example, fecal bacteria concentration tends to be higher during ebb tide and at night) and the inherent time delay between when a water sample is collected and when a sign is posted or removed. To prevent posting errors, the researchers recommend using an averaging method rather than a single sample to determine unsafe water quality. (For example, one simple averaging method is to take a random sample of multiple water specimens and compare the average fecal bacteria level of the sample with the limit of 400 CFU/100 mL to determine whether the water is safe.) Discuss the pros and cons of using the single sample standard versus the averaging method. Part of your discussion should address the probability of posting a sign when the water is safe and the probability of posting a sign when the water is unsafe. (Assume that the fecal bacteria concentrations of water specimens at Huntington Beach follow an approximately normal distribution.

Short Answer

Expert verified

It can be concluded that by taking more samples, we will get correct decisions rather than taking a single sample.

Step by step solution

01

Given information

The fecal bacteria concentration of water specimens follows a normal distribution with a mean of 370 and a standard deviation of 30.

02

Calculating the probabilities

Let us assume that one sample is selected.

P(x400)=Px¯μσ400μσ=z40037030=(z3030)

=P(z1)

From the z-score table,

=0.50.3413=0.1587

Hence, it can be concluded that the beach will be closed 15.87% of the time if the water is safe.

Let,

P(x400)=Px¯μσ400μσ=Pz40043030=P(z1)

From the z-score table,

=0.50.3413=0.1587

Hence, it can be concluded that the beach will be open 15.87% of the time.

Let's assume that the fecal bacteria concentration of water specimens follows a normal distribution with a mean of 370 and a standard deviation of 30.

Let's assume that 36 samples are selected.

According to the Central limit theorem, if n is larger, then x¯ it follows a normal distribution with mean μx¯=μand standard deviation.

σx¯=σn=3036=5

Now, let's,

P(x400)=Px¯μσn400μσn=Pz4003705=Pz305

=P(z6)

From the z-score table,

=0.50.5=0

Hence, for the sample size of 36, it can be concluded that the beach will never be closed if the water is Safe.

P(x400)=Px¯μσn400μσn=Pz4003705=Pz305

=P(z6)

From the z-score table,

=0.50.5=0

Hence, for the sample size of 36, it can be concluded that the beach will never be open if the water is unsafe.

Thus, it can be concluded that by taking more samples, we will get correct decisions rather than taking a single sample.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: The standard deviation (or, as it is usually called, the standard error) of the sampling distribution for the sample mean, x¯ , is equal to the standard deviation of the population from which the sample was selected, divided by the square root of the sample size. That is

σX¯=σn

  1. As the sample size is increased, what happens to the standard error of? Why is this property considered important?
  2. Suppose a sample statistic has a standard error that is not a function of the sample size. In other words, the standard error remains constant as n changes. What would this imply about the statistic as an estimator of a population parameter?
  3. Suppose another unbiased estimator (call it A) of the population mean is a sample statistic with a standard error equal to

σA=σn3

Which of the sample statistics,x¯or A, is preferable as an estimator of the population mean? Why?

  1. Suppose that the population standard deviation σis equal to 10 and that the sample size is 64. Calculate the standard errors of x¯and A. Assuming that the sampling distribution of A is approximately normal, interpret the standard errors. Why is the assumption of (approximate) normality unnecessary for the sampling distribution ofx¯?

Question: Refer to Exercise 5.5, in which we found the sampling distribution of the sample median. Is the median an unbiased estimator of the population mean m?

Refer to Exercise 5.5, in which we found the sampling distribution of the sample median. Is the median an unbiased estimator of the population mean m?

Video game players and divided attention tasks. Human Factors (May 2014) published the results of a study designed to determine whether video game players are better than non–video game players at crossing the street when presented with distractions. Participants (college students) entered a street-crossing simulator. The simulator was designed to have cars traveling at various high rates of speed in both directions. During the crossing, the students also performed a memory task as a distraction. The researchers found that students who are video game players took an average of 5.1 seconds to cross the street, with a standard deviation of .8 second. Assume that the time, x, to cross the street for the population of video game players has , Now consider a sample of 30 students and let x represent the sample mean time (in seconds) to cross the street in the simulator.

a. Find Px¯>5.5

b. The 30 students in the sample are all non–video game players. What inference can you make about and/or for the population of non–video game players? Explain.

Requests to a Web server. In Exercise 4.175 (p. 282) youlearned that Brighton Webs LTD modeled the arrivaltime of requests to a Web server within each hour, using auniform distribution. Specifically, the number of seconds xfrom the start of the hour that the request is made is uniformly

distributed between 0 and 3,600 seconds. In a randomsample of n= 60 Web server requests, letrepresentthe sample mean number of seconds from the start of thehour that the request is made.

  1. Find Ex¯and interpret its value.
  2. Find Varx¯.
  3. Describe the shape of the sampling distribution of x¯.
  4. Find the probability that x¯is between 1,700 and 1,900seconds.
  5. Find the probability that x¯exceeds 2,000 seconds.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free