Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Purchasing decision. A building contractor has decided to purchase a load of the factory-reject aluminum siding as long as the average number of flaws per piece of siding in a sample of size 35 from the factory's reject pile is 2.1 or less. If it is known that the number of flaws per piece of siding in the factory's reject pile has a Poisson probability distribution with a mean of 2.5, find the approximate probability that the contractor will not purchase a load of siding

Short Answer

Expert verified

The probability that the contractor will not purchase a load of siding is 0.9332.

Step by step solution

01

Given information

The company's policy is to purchase a load when the factory rejects a pile is 2.1 or less.

The random variable x is defined as the number of flaws per piece.

Provided that random variable x has a Poisson distribution with a mean of 2.5.The probability that the contractor will not purchase a load of siding is calculated using the normal distribution.

02

Calculating the probability

The Poisson distribution has the same mean and variance.

Herex¯is the average number of flaws having meanlocalid="1659736038381" =2.5and variance,localid="1659736032501" =2.5

Hence,

localid="1659736046989" μx¯=2.5,

localid="1659736043170" σx¯=2.535=0.2678

The contractor will not purchase if the average number of flaws is 2.1 or more.The associated normal curve is drawn as follows:

Therefore, the required probability is,

Px¯2.1=Px¯-μx¯σx2.1-2.50.2673=Pz-1.4967=0.5+A

=0.5+0.4332=0.9332

Hence, the contractor's probability of not purchasing a load of siding is 0.9332.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the population described by the probability distribution shown below.

The random variable x is observed twice. If these observations are independent, verify that the different samples of size 2 and their probabilities are as shown below.

a. Find the sampling distribution of the sample meanx.

b. Construct a probability histogram for the sampling distribution ofx.

c. What is the probability thatxis 4.5 or larger?

d. Would you expect to observe a value ofxequal to 4.5 or larger? Explain.

A random sample of n= 300 observations is selectedfrom a binomial population with p= .8. Approximateeach of the following probabilities:

  1. Pp^<0.83
  2. Pp^>0.75
  3. P0.79<p^<0.81

Question: Consider the following probability distribution:

a. Calculate μfor this distribution.

b. Find the sampling distribution of the sample meanxfor a random sample of n = 3 measurements from this distribution, and show thatxis an unbiased estimator of μ.

c. Find the sampling distribution of the sample median x for a random sample of n = 3 measurements from this distribution, and show that the median is a biased estimator of μ.

d. If you wanted to use a sample of three measurements from this population to estimate μ, which estimator would you use? Why?

Producing machine bearings. To determine whether a metal lathe that produces machine bearings is properly adjusted, a random sample of 25 bearings is collected and the diameter of each is measured.

  1. If the standard deviation of the diameters of the bearings measured over a long period of time is .001 inch, what is the approximate probability that the mean diameter xof the sample of 25 bearings will lie within.0001 inch of the population mean diameter of the bearings?
  2. If the population of diameters has an extremely skewed distribution, how will your approximation in part a be affected?

Refer to Exercise 5.3. Assume that a random sample of n = 2 measurements is randomly selected from the population.

a. List the different values that the sample median m may assume and find the probability of each. Then give the sampling distribution of the sample median.

b. Construct a probability histogram for the sampling distribution of the sample median and compare it with the probability histogram for the sample mean (Exercise 5.3, part b).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free