Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:Quality control. Refer to Exercise 5.68. The mean diameter of the bearings produced by the machine is supposed to be .5 inch. The company decides to use the sample mean from Exercise 5.68 to decide whether the process is in control (i.e., whether it is producing bearings with a mean diameter of .5 inch). The machine will be considered out of control if the mean of the sample of n = 25 diameters is less than .4994 inch or larger than .5006 inch. If the true mean diameter of the bearings produced by the machine is .501 inch, what is the approximate probability that the test will imply that the process is out of control?

Short Answer

Expert verified

The probability that the test will imply that the process is out of control is 0.97725.

Step by step solution

01

Given Information

The sample size is 25

The mean is 0.501.inch

The standard deviation is 0.001.inch

The standard deviation of x¯is calculated as

σX¯=σn=0.00125=0.0002

02

Explanation

The probability is computed as

px¯<0.4994=px¯-μσn<0.4994-0.5010.0002=pz<-0.00160.0002=pz<-8=0

And

px¯>0.5006=px¯-μσn>0.5006-0.5010.0002=pz>-0.00040.0002=pz>-2=0.97725

Here we used equation 1 & 2 to get required probability

px¯<0.4994+px¯>0.5006=0+0.97725=0.97725

Hence, the probability is 0.97725.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Salary of a travel management professional. According to the most recent Global Business Travel Association (GBTA) survey, the average base salary of a U.S. travel management professional is \(94,000. Assume that the standard deviation of such salaries is \)30,000. Consider a random sample of 50 travel management professionals and let χ¯ represent the mean salary for the sample.

  1. What isμχ¯?
  2. What isσχ¯?
  3. Describe the shape of the sampling distribution ofχ¯.
  4. Find the z-score for the valueχ¯=86,660
  5. FindPχ¯>86,660.

Study of why EMS workers leave the job. A study of fulltimeemergency medical service (EMS) workers publishedin the Journal of Allied Health(Fall 2011) found that onlyabout 3% leave their job in order to retire. (See Exercise3.45, p. 182.) Assume that the true proportion of all fulltime

EMS workers who leave their job in order to retire is p= .03. In a random sample of 1,000 full-time EMS workers, let represent the proportion who leave their job inorder to retire.

  1. Describe the properties of the sampling distribution ofp^.
  2. Compute P(p<0.05)Interpret this result.
  3. ComputeP(p>0.025)Interpret this result.

Question:Piercing rating of fencing safety jackets. A manufacturer produces safety jackets for competitive fencers. These jackets are rated by the minimum force, in newtons, that will allow a weapon to pierce the jacket. When this process is operating correctly, it produces jackets that have ratings with an average of 840 newtons and a standard deviation of 15 newtons. FIE, the international governing body for fencing, requires jackets to be rated at a minimum of 800 newtons. To check whether the process is operating correctly, a manager takes a sample of 50 jackets from the process, rates them, and calculatesx¯, the mean rating for jackets in the sample. She assumes that the standard deviation of the process is fixed but is worried that the mean rating of the process may have changed.

a. What is the sampling distribution of x¯if the process is still operating correctly?

Producing machine bearings. To determine whether a metal lathe that produces machine bearings is properly adjusted, a random sample of 25 bearings is collected and the diameter of each is measured.

  1. If the standard deviation of the diameters of the bearings measured over a long period of time is .001 inch, what is the approximate probability that the mean diameter xof the sample of 25 bearings will lie within.0001 inch of the population mean diameter of the bearings?
  2. If the population of diameters has an extremely skewed distribution, how will your approximation in part a be affected?

Question: Consider the following probability distribution:


a. Findμand σ2.

b. Find the sampling distribution of the sample mean x for a random sample of n = 2 measurements from this distribution

c. Show thatxis an unbiased estimator of μ. [Hint: Show that(x)=xp(x)=μ. ]

d. Find the sampling distribution of the sample variances2for a random sample of n = 2 measurements from this distribution.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free