Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Refer to Exercise 5.3 and find E=(x)=μ. Then use the sampling distribution ofxfound in Exercise 5.3 to find the expected value ofx. Note thatE=(x)=μ.

Short Answer

Expert verified

E=(x)=2.7

Step by step solution

01

Determination of the probabilities of the means

The list of the probabilities found in Exercise 5.3 is shown below.

Mean

Probability

1

0.04

1.5

0.12

2

0.17

2.5

0.20

3

0.20

3.5

0.14

4

0.08

4.5

0.04

5

0.01

02

Calculation of Ex

The calculation of E(x)is shown below.

E(x)=[xpx]=1×0.04+1.5×0.12+2×0.17+2.5×0.20+3×0.20+3.5×0.14+4×0.08+4.5×0.04+5×0.01=0.04+0.18+0.34+0.50+0.60+0.49+0.32+0.18+0.05=2.7

Here, x= variables, and p(x)=probabilities.

Therefore, the final answer is 2.7.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A random sample of n=900 observations is selected from a population with μ=100andσ=10

a. What are the largest and smallest values ofx¯ that you would expect to see?

b. How far, at the most, would you expect xto deviate from μ?

c. Did you have to know μto answer part b? Explain.

Question: Hotel guest satisfaction. Refer to the results of the 2015 North American Hotel Guest Satisfaction Index Study, Exercise 4.49 (p. 239). Recall that 15% of hotel guests were “delighted” with their experience (giving a rating of 10 out of 10); of these guests, 80% stated they would “definitely” recommend the hotel. In a random sample of 100 hotel guests, find the probability that fewer than 10 were delighted with their stay and would recommend the hotel.

Tomato as a taste modifier. Miraculin is a protein naturally produced in a rare tropical fruit that can convert a sour taste into a sweet taste. Refer to the Plant Science (May 2010) investigation of the ability of a hybrid tomato plant to produce miraculin, Exercise 4.99 (p. 263). Recall that the amount x of miraculin produced in the plant had a mean of 105.3 micrograms per gram of fresh weight with a standard deviation of 8.0. Consider a random sample of n=64hybrid tomato plants and letx represent the sample mean amount of miraculin produced. Would you expect to observe a value of X less than 103 micrograms per gram of fresh weight? Explain.

Fecal pollution at Huntington Beach. California mandates fecal indicator bacteria monitoring at all public beaches. When the concentration of fecal bacteria in the water exceeds a certain limit (400 colony-forming units of fecal coliform per 100 millilitres), local health officials must post a sign (called surf zone posting) warning beachgoers of potential health risks. For fecal bacteria, the state uses a single-sample standard; if the fecal limit is exceeded in a single sample of water, surf zone posting is mandatory. This single-sample standard policy has led to a recent rash of beach closures in California. A study of the surf water quality at Huntington Beach in California was published in Environmental Science & Technology (September 2004). The researchers found that beach closings were occurring despite low pollution levels in some instances, while in others, signs were not posted when the fecal limit was exceeded. They attributed these "surf zone posting errors" to the variable nature of water quality in the surf zone (for example, fecal bacteria concentration tends to be higher during ebb tide and at night) and the inherent time delay between when a water sample is collected and when a sign is posted or removed. To prevent posting errors, the researchers recommend using an averaging method rather than a single sample to determine unsafe water quality. (For example, one simple averaging method is to take a random sample of multiple water specimens and compare the average fecal bacteria level of the sample with the limit of 400 CFU/100 mL to determine whether the water is safe.) Discuss the pros and cons of using the single sample standard versus the averaging method. Part of your discussion should address the probability of posting a sign when the water is safe and the probability of posting a sign when the water is unsafe. (Assume that the fecal bacteria concentrations of water specimens at Huntington Beach follow an approximately normal distribution.

Question: Consider the following probability distribution:


a. Findμand σ2.

b. Find the sampling distribution of the sample mean x for a random sample of n = 2 measurements from this distribution

c. Show thatxis an unbiased estimator of μ. [Hint: Show that(x)=xp(x)=μ. ]

d. Find the sampling distribution of the sample variances2for a random sample of n = 2 measurements from this distribution.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free