Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A random sample of n = 250 measurements is drawn from a binomial population with a probability of success of .85.

  1. FindEPandσp
  2. Describe the shape of the sampling distribution ofp.
  3. Find

Short Answer

Expert verified

Random sampling is a sample strategy in which every sample has an equal probability of being selected. A random sample is intended to provide an impartial reflection of the overall population.

Step by step solution

01

 Step 1: (a) The data is given below

The calculation is given below:

Given,

p=0.85Population Proportion= 1-P=1-0.85=0.15

n=250Sample Size

The sample proportionis p.

Mean =μpP=0.85

SDσp=p1-p/ n=0.85×0.15250=0.02258317

μp=0.85σp=0.02258317

02

(b) The data is given below

The calculation is given below:

Since bothn×p and n×1-pare>=10, so

The psampling distribution is about normal.

03

(c) The data is given below

The calculation is given below:

pp-μp/σp<0.9-μp/μp=PZ<0.9-0.85/0.02258317=PZ<2.21=0.9864...use z table

pp<0.9=0.9864

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Video game players and divided attention tasks. Human Factors (May 2014) published the results of a study designed to determine whether video game players are better than non–video game players at crossing the street when presented with distractions. Participants (college students) entered a street-crossing simulator. The simulator was designed to have cars traveling at various high rates of speed in both directions. During the crossing, the students also performed a memory task as a distraction. The researchers found that students who are video game players took an average of 5.1 seconds to cross the street, with a standard deviation of .8 second. Assume that the time, x, to cross the street for the population of video game players has , Now consider a sample of 30 students and let x represent the sample mean time (in seconds) to cross the street in the simulator.

a. Find Px¯>5.5

b. The 30 students in the sample are all non–video game players. What inference can you make about and/or for the population of non–video game players? Explain.

Requests to a Web server. In Exercise 4.175 (p. 282) youlearned that Brighton Webs LTD modeled the arrivaltime of requests to a Web server within each hour, using auniform distribution. Specifically, the number of seconds xfrom the start of the hour that the request is made is uniformly

distributed between 0 and 3,600 seconds. In a randomsample of n= 60 Web server requests, letrepresentthe sample mean number of seconds from the start of thehour that the request is made.

  1. Find Ex¯and interpret its value.
  2. Find Varx¯.
  3. Describe the shape of the sampling distribution of x¯.
  4. Find the probability that x¯is between 1,700 and 1,900seconds.
  5. Find the probability that x¯exceeds 2,000 seconds.

Corporate sustainability of CPA firms. Refer to the Business and Society (March 2011) study on the sustainability behaviours of CPA corporations, Exercise 1.28 (p. 51). Corporate sustainability, recall, refers to business practices designed around social and environmental considerations. The level of support senior managers has for corporate sustainability was measured quantitatively on a scale ranging from 0 to 160 points. The study provided the following information on the distribution of levels of support for sustainability:μ=68 , σ=27. Now consider a random sample of 45 senior managers and let x represent the sample mean level of support.

a. Give the value of μx¯, the mean of the sampling distribution ofx¯ , and interpret the result.

b. Give the value ofσx¯ , the standard deviation of the sampling distribution of x¯, and interpret the result.

c. What does the Central Limit Theorem say about the shape of the sampling distribution ofx¯ ?

d. Find Px¯>65.

Will the sampling distribution of x¯always be approximately normally distributed? Explain

Variable life insurance return rates. Refer to the International Journal of Statistical Distributions (Vol. 1, 2015) study of a variable life insurance policy, Exercise 4.97 (p. 262). Recall that a ratio (x) of the rates of return on the investment for two consecutive years was shown to have a normal distribution, with μ=1.5, σ=0.2. Consider a random sample of 100 variable life insurance policies and letx¯represent the mean ratio for the sample.

a. Find E(x) and interpret its value.

b. Find Var(x).

c. Describe the shape of the sampling distribution ofx¯.

d. Find the z-score for the value x¯=1.52.

e. Find Px¯>1.52

f. Would your answers to parts a–e change if the rates (x) of return on the investment for two consecutive years was not normally distributed? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free