Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Plastic fill process. University of Louisville operators examined the process of filling plastic pouches of dry blended biscuit mix (Quality Engineering, Vol. 91, 1996). The current fill mean of the process is set at μ= 406 grams, and the process fills standard deviation is σ= 10.1 grams. (According to the operators, “The high level of variation is since the product has poor flow properties and is, therefore, difficult to fill consistently from pouch to pouch.”) Operators monitor the process by randomly sampling 36 pouches each day and measuring the amount of biscuit mix in each. Considerx the mean fill amount of the sample of 36 products. Suppose that on one particular day, the operators observe x= 400.8. One of the operators believes that this indicates that the true process fill mean for that day is less than 406 grams. Another operator argues thatμ = 406, and the small observed value is due to random variation in the fill process. Which operator do you agree with? Why?

Short Answer

Expert verified

The operator, who got the mean value of 406 grams, can be considered.

Step by step solution

01

Given information

There is the process of filling plastic pouches with dry-blended biscuit mix. The mean of the filling is 406 grama, and the standard deviation is 10.1 grams.

Two operators took 36 pouches as the sample, and one of them observed that the mean of the filling is 400.8 grams, and another one observed that the mean is 406 grams.

Null hypothesis: Ho

μ=406

Alternate hypothesis: Ha

μ<406

Significance level:α=0.05

Statistic test:

Z=μσ/nZ=400.840610.1/36Z=3.08910891

P value:

Z = - 3.089 and Z test p-value will be 0.001

02

Conclusion

Simply by the outputs of those two operators, there can be easily concluded that the second operators get the absolute mean compared to the original population of pouches. He gets the mean value of 406 grams, the same as the population. Other while the first operator gets the mean value of 400.8 grams.So, there can be agreed with the operator who got the mean value of 407 grams.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Will the sampling distribution of x¯always be approximately normally distributed? Explain

Question:A random sample of n = 500 observations is selected from a binomial population with p = .35.

a. Give the mean and standard deviation of the (repeated) sampling distribution ofp^the sample proportion of successes for the 500 observations.

b. Describe the shape of the sampling distribution of p^. Does your answer depend on the sample size?

Question:Piercing rating of fencing safety jackets. A manufacturer produces safety jackets for competitive fencers. These jackets are rated by the minimum force, in newtons, that will allow a weapon to pierce the jacket. When this process is operating correctly, it produces jackets that have ratings with an average of 840 newtons and a standard deviation of 15 newtons. FIE, the international governing body for fencing, requires jackets to be rated at a minimum of 800 newtons. To check whether the process is operating correctly, a manager takes a sample of 50 jackets from the process, rates them, and calculatesx¯, the mean rating for jackets in the sample. She assumes that the standard deviation of the process is fixed but is worried that the mean rating of the process may have changed.

a. What is the sampling distribution of x¯if the process is still operating correctly?

Refer to Exercise 5.18. Find the probability that

  1. x¯is less than 16.
  2. x¯is greater than 23.
  3. x¯is greater than 25.
  4. x¯falls between 16 and 22.
  5. x¯is less than 14.

Downloading “apps” to your cell phone. Refer toExercise 4.173 (p. 282) and the August 2011 survey by thePew Internet & American Life Project. The study foundthat 40% of adult cell phone owners have downloadedan application (“app”) to their cell phone. Assume thispercentage applies to the population of all adult cell phoneowners.

  1. In a random sample of 50 adult cell phone owners, howlikely is it to find that more than 60% have downloadedan “app” to their cell phone?
  2. Refer to part a. Suppose you observe a sample proportionof .62. What inference can you make about the trueproportion of adult cell phone owners who have downloadedan “app”?
  3. Suppose the sample of 50 cell phone owners is obtainedat a convention for the International Association forthe Wireless Telecommunications Industry. How willyour answer to part b change, if at all?
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free