Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Plastic fill process. University of Louisville operators examined the process of filling plastic pouches of dry blended biscuit mix (Quality Engineering, Vol. 91, 1996). The current fill mean of the process is set at μ= 406 grams, and the process fills standard deviation is σ= 10.1 grams. (According to the operators, “The high level of variation is since the product has poor flow properties and is, therefore, difficult to fill consistently from pouch to pouch.”) Operators monitor the process by randomly sampling 36 pouches each day and measuring the amount of biscuit mix in each. Considerx the mean fill amount of the sample of 36 products. Suppose that on one particular day, the operators observe x= 400.8. One of the operators believes that this indicates that the true process fill mean for that day is less than 406 grams. Another operator argues thatμ = 406, and the small observed value is due to random variation in the fill process. Which operator do you agree with? Why?

Short Answer

Expert verified

The operator, who got the mean value of 406 grams, can be considered.

Step by step solution

01

Given information

There is the process of filling plastic pouches with dry-blended biscuit mix. The mean of the filling is 406 grama, and the standard deviation is 10.1 grams.

Two operators took 36 pouches as the sample, and one of them observed that the mean of the filling is 400.8 grams, and another one observed that the mean is 406 grams.

Null hypothesis: Ho

μ=406

Alternate hypothesis: Ha

μ<406

Significance level:α=0.05

Statistic test:

Z=μσ/nZ=400.840610.1/36Z=3.08910891

P value:

Z = - 3.089 and Z test p-value will be 0.001

02

Conclusion

Simply by the outputs of those two operators, there can be easily concluded that the second operators get the absolute mean compared to the original population of pouches. He gets the mean value of 406 grams, the same as the population. Other while the first operator gets the mean value of 400.8 grams.So, there can be agreed with the operator who got the mean value of 407 grams.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Requests to a Web server. In Exercise 4.175 (p. 282) youlearned that Brighton Webs LTD modeled the arrivaltime of requests to a Web server within each hour, using auniform distribution. Specifically, the number of seconds xfrom the start of the hour that the request is made is uniformly

distributed between 0 and 3,600 seconds. In a randomsample of n= 60 Web server requests, letrepresentthe sample mean number of seconds from the start of thehour that the request is made.

  1. Find Ex¯and interpret its value.
  2. Find Varx¯.
  3. Describe the shape of the sampling distribution of x¯.
  4. Find the probability that x¯is between 1,700 and 1,900seconds.
  5. Find the probability that x¯exceeds 2,000 seconds.

A random sample of n=900 observations is selected from a population with μ=100andσ=10

a. What are the largest and smallest values ofx¯ that you would expect to see?

b. How far, at the most, would you expect xto deviate from μ?

c. Did you have to know μto answer part b? Explain.

Surface roughness of pipe. Refer to the Anti-CorrosionMethods and Materials(Vol. 50, 2003) study of the surface roughness of oil field pipes, Exercise 2.46 (p. 96). Recall that a scanning probe instrument was used to measure thesurface roughness x(in micrometers) of 20 sampled sectionsof coated interior pipe. Consider the sample mean,X¯.

  1. Assume that the surface roughness distribution has a mean of = 1.8 micrometers and a standard deviation of = .5 micrometer. Use this information to find theprobability thatexceeds 1.85 micrometers.
  2. The sample data are reproduced in the following table.Compute.
  3. Based on the result, part b, comment on the validity ofthe assumptions made in part a.

1.72

2.50

2.16

2.13

1.06

2.24

2.31

2.03

1.09

1.40

2.57

2.64

1.26

2.05

1.19

2.13

1.27

1.51

2.41

1.95

Question:Quality control. Refer to Exercise 5.68. The mean diameter of the bearings produced by the machine is supposed to be .5 inch. The company decides to use the sample mean from Exercise 5.68 to decide whether the process is in control (i.e., whether it is producing bearings with a mean diameter of .5 inch). The machine will be considered out of control if the mean of the sample of n = 25 diameters is less than .4994 inch or larger than .5006 inch. If the true mean diameter of the bearings produced by the machine is .501 inch, what is the approximate probability that the test will imply that the process is out of control?

Question: The standard deviation (or, as it is usually called, the standard error) of the sampling distribution for the sample mean, x¯ , is equal to the standard deviation of the population from which the sample was selected, divided by the square root of the sample size. That is

σX¯=σn

  1. As the sample size is increased, what happens to the standard error of? Why is this property considered important?
  2. Suppose a sample statistic has a standard error that is not a function of the sample size. In other words, the standard error remains constant as n changes. What would this imply about the statistic as an estimator of a population parameter?
  3. Suppose another unbiased estimator (call it A) of the population mean is a sample statistic with a standard error equal to

σA=σn3

Which of the sample statistics,x¯or A, is preferable as an estimator of the population mean? Why?

  1. Suppose that the population standard deviation σis equal to 10 and that the sample size is 64. Calculate the standard errors of x¯and A. Assuming that the sampling distribution of A is approximately normal, interpret the standard errors. Why is the assumption of (approximate) normality unnecessary for the sampling distribution ofx¯?
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free