Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Critical-part failures in NASCAR vehicles. Refer to The Sport Journal (Winter 2007) analysis of critical-part failures at NASCAR races, Exercise 4.144 (p. 277). Recall that researchers found that the time x (in hours) until the first critical-part failure is exponentially distributed with μ= .10 and s = .10. Now consider a random sample of n = 50 NASCAR races and let χ¯ represent the sample meantime until the first critical-part failure.

a) Find E(χ¯) and Var(χ¯)

b) Although x has an exponential distribution, the sampling distribution of x is approximately normal. Why?

c) Find the probability that the sample meantime until the first critical-part failure exceeds .13 hour.

Short Answer

Expert verified

It is frequently used to simulate the time spent among occurrences. Continuous probability distributions are used to calculate the incidence of occurrences.

Step by step solution

01

 Step 1: (a) Given

The time χ is exponentially distributed with the mean:

μ=10σ=0.10E(χ)=μ=0.10

V(χ)=σ2=(0.1)2=0.01

The calculation is given below:

Now, χrepresents the sample mean period for n = 50

localid="1651469168306" χ-=χ1+χ2+.......+χ5050

E(χ-)=150E(χ1+χ2+.......+χ50)=150(E(χ1)+E(χ2)+.......+E(χ50))=150(μ+μ+50times+μ)=50μ50

localid="1651469270820" =0μ

E(χ-)=0.1

localid="1651469378610" V(χ-)=V(i150×i50)=1(50)2V(i150×i)=12500i150×V(χi)=12500i150σ2

localid="1651469435234" =12500×500σ2=σ250=0.0150

V(χ-)=0.0002

02

(b) Explanation

The E(χ-)=0.1orμ(χ-)andV(χ-)=0.0002=σχ2. Then using the control limit theorem χ-~N(μχ1σχ2)that isχ-~N(0.001,0.002).It is since n =50 that is the higher size of the sample (>30).

03

(c) Explanation

The calculation is given below:

P(Samplemeantime>0.13)=P(.13)=P(0.010.002>0.130.010.002)=P(z>8.49)=0

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Do social robots walk or roll? Refer to the International Conference on Social Robotics (Vol. 6414, 2010) study of the trend in the design of social robots, Exercise 2.5 (p. 72). The researchers obtained a random sample of 106 social robots through a Web search and determined the number that was designed with legs but no wheels. Let p^represent the sample proportion of social robots designed with legs but no wheels. Assume that in the population of all social robots, 40% are designed with legs but no wheels.

a. Give the mean and standard deviation of the sampling distribution of p^.

b. Describe the shape of the sampling distribution of p^.

c. Find P(p^>.59).

d. Recall that the researchers found that 63 of the 106 robots were built with legs only. Does this result cast doubt on the assumption that 40% of all social robots are designed with legs but no wheels? Explain.

Question: Consider the following probability distribution:

a. Calculate μfor this distribution.

b. Find the sampling distribution of the sample meanxfor a random sample of n = 3 measurements from this distribution, and show thatxis an unbiased estimator of μ.

c. Find the sampling distribution of the sample median x for a random sample of n = 3 measurements from this distribution, and show that the median is a biased estimator of μ.

d. If you wanted to use a sample of three measurements from this population to estimate μ, which estimator would you use? Why?

Motivation of drug dealers. Refer to the Applied Psychology in Criminal Justice (September 2009) investigation of the personality characteristics of drug dealers, Exercise 2.80 (p. 111). Convicted drug dealers were scored on the Wanting Recognition (WR) Scale. This scale provides a quantitative measure of a person’s level of need for approval and sensitivity to social situations. (Higher scores indicate a greater need for approval.) Based on the study results, we can assume that the WR scores for the population of convicted drug dealers have a mean of 40 and a standard deviation of 5. Suppose that in a sample of 100 people, the mean WR scale score is x = 42. Is this sample likely selected from the population of convicted drug dealers? Explain.

Consider the following probability distribution:

a. Findμ.

b. For a random sample of n = 3 observations from this distribution, find the sampling distribution of the sample mean.

c. Find the sampling distribution of the median of a sample of n = 3 observations from this population.

d. Refer to parts b and c, and show that both the mean and median are unbiased estimators ofμfor this population.

e. Find the variances of the sampling distributions of the sample mean and the sample median.

f. Which estimator would you use to estimateμ? Why?

A random sample of n = 64 observations is drawn from a population with a mean equal to 20 and a standard deviation equal to 16

a. Give the mean and standard deviation of the (repeated) sampling distribution of x.

b. Describe the shape of the sampling distribution of x. Does your answer depend on the sample size?

c. Calculate the standard normal z-score corresponding to a value of x = 15.5.

d. Calculate the standard normal z-score corresponding to x = 23

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free