Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Critical-part failures in NASCAR vehicles. Refer to The Sport Journal (Winter 2007) analysis of critical-part failures at NASCAR races, Exercise 4.144 (p. 277). Recall that researchers found that the time x (in hours) until the first critical-part failure is exponentially distributed with μ= .10 and s = .10. Now consider a random sample of n = 50 NASCAR races and let χ¯ represent the sample meantime until the first critical-part failure.

a) Find E(χ¯) and Var(χ¯)

b) Although x has an exponential distribution, the sampling distribution of x is approximately normal. Why?

c) Find the probability that the sample meantime until the first critical-part failure exceeds .13 hour.

Short Answer

Expert verified

It is frequently used to simulate the time spent among occurrences. Continuous probability distributions are used to calculate the incidence of occurrences.

Step by step solution

01

 Step 1: (a) Given

The time χ is exponentially distributed with the mean:

μ=10σ=0.10E(χ)=μ=0.10

V(χ)=σ2=(0.1)2=0.01

The calculation is given below:

Now, χrepresents the sample mean period for n = 50

localid="1651469168306" χ-=χ1+χ2+.......+χ5050

E(χ-)=150E(χ1+χ2+.......+χ50)=150(E(χ1)+E(χ2)+.......+E(χ50))=150(μ+μ+50times+μ)=50μ50

localid="1651469270820" =0μ

E(χ-)=0.1

localid="1651469378610" V(χ-)=V(i150×i50)=1(50)2V(i150×i)=12500i150×V(χi)=12500i150σ2

localid="1651469435234" =12500×500σ2=σ250=0.0150

V(χ-)=0.0002

02

(b) Explanation

The E(χ-)=0.1orμ(χ-)andV(χ-)=0.0002=σχ2. Then using the control limit theorem χ-~N(μχ1σχ2)that isχ-~N(0.001,0.002).It is since n =50 that is the higher size of the sample (>30).

03

(c) Explanation

The calculation is given below:

P(Samplemeantime>0.13)=P(.13)=P(0.010.002>0.130.010.002)=P(z>8.49)=0

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Will the sampling distribution of x¯always be approximately normally distributed? Explain

Producing machine bearings. To determine whether a metal lathe that produces machine bearings is properly adjusted, a random sample of 25 bearings is collected and the diameter of each is measured.

  1. If the standard deviation of the diameters of the bearings measured over a long period of time is .001 inch, what is the approximate probability that the mean diameter xof the sample of 25 bearings will lie within.0001 inch of the population mean diameter of the bearings?
  2. If the population of diameters has an extremely skewed distribution, how will your approximation in part a be affected?

Question:Consider a sample statistic A. As with all sample statistics, A is computed by utilizing a specified function (formula) of the sample measurements. (For example, if A were the sample mean, the specified formula would sum the measurements and divide by the number of measurements.

a. Describe what we mean by the phrase "the sampling distribution of the sample statistic A."

b. Suppose A is to be used to estimate a population parameterθ. What is meant by the assertion that A is an unbiased estimator of θ?

c. Consider another sample statistic, B. Assume that B is also an unbiased estimator of the population parameterα. How can we use the sampling distributions of A and B to decide which is the better estimator of θ?

d. If the sample sizes on which A and B are based are large, can we apply the Central Limit Theorem and assert that the sampling distributions of A and B are approximately normal? Why or why not?

Plastic fill process. University of Louisville operators examined the process of filling plastic pouches of dry blended biscuit mix (Quality Engineering, Vol. 91, 1996). The current fill mean of the process is set at μ= 406 grams, and the process fills standard deviation is σ= 10.1 grams. (According to the operators, “The high level of variation is since the product has poor flow properties and is, therefore, difficult to fill consistently from pouch to pouch.”) Operators monitor the process by randomly sampling 36 pouches each day and measuring the amount of biscuit mix in each. Considerx the mean fill amount of the sample of 36 products. Suppose that on one particular day, the operators observe x= 400.8. One of the operators believes that this indicates that the true process fill mean for that day is less than 406 grams. Another operator argues thatμ = 406, and the small observed value is due to random variation in the fill process. Which operator do you agree with? Why?

Do social robots walk or roll? Refer to the International Conference on Social Robotics (Vol. 6414, 2010) study of the trend in the design of social robots, Exercise 2.5 (p. 72). The researchers obtained a random sample of 106 social robots through a Web search and determined the number that was designed with legs but no wheels. Let p^represent the sample proportion of social robots designed with legs but no wheels. Assume that in the population of all social robots, 40% are designed with legs but no wheels.

a. Give the mean and standard deviation of the sampling distribution of p^.

b. Describe the shape of the sampling distribution of p^.

c. Find P(p^>.59).

d. Recall that the researchers found that 63 of the 106 robots were built with legs only. Does this result cast doubt on the assumption that 40% of all social robots are designed with legs but no wheels? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free