Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A random sample of n=900 observations is selected from a population with μ=100andσ=10

a. What are the largest and smallest values ofx¯ that you would expect to see?

b. How far, at the most, would you expect xto deviate from μ?

c. Did you have to know μto answer part b? Explain.

Short Answer

Expert verified

a.Thesmallestvalueofxis99,andthelargestvalueofxis101.b.Itwouldnotbeexpectedthatxdeviatesfromμc.No,becausepreviousansweronlydependentonthestandarddeviationofthesamplingdistributionofthesamplemean,butnotthemeanitself.

Step by step solution

01

Given information

Arandomsampleofn=900observationsisselectedfromapopulationwithμ=100andσ=10

02

Finding the largest and smallest values of x

a.

Here, the sample mean is μx=μand the sample standard deviation is σx=σn

Therefore,

mx=100,

σx=10900=1030=0.33

Since, almost all of the time, the sample mean will be within three standard deviations of the mean.

So,

μ±3σ=100±30.33=100-0.99,100+0.9999,101

Therefore, the smallest value of xis 99, and the largest value of xis 101.

03

Checking whether deviation of X from μ expect or not.

b.

No, because if more than three standard deviation then

3σx=313=1

Therefore, It would not be expected that that xdeviates fromμ.

04

Checking whether μ is necessary to answer part (b) or not.

c.

No, because previous answer only dependent on the standard deviation of the sampling distribution of the sample mean, but not the mean itself.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:Consider a sample statistic A. As with all sample statistics, A is computed by utilizing a specified function (formula) of the sample measurements. (For example, if A were the sample mean, the specified formula would sum the measurements and divide by the number of measurements.

a. Describe what we mean by the phrase "the sampling distribution of the sample statistic A."

b. Suppose A is to be used to estimate a population parameterθ. What is meant by the assertion that A is an unbiased estimator of θ?

c. Consider another sample statistic, B. Assume that B is also an unbiased estimator of the population parameterα. How can we use the sampling distributions of A and B to decide which is the better estimator of θ?

d. If the sample sizes on which A and B are based are large, can we apply the Central Limit Theorem and assert that the sampling distributions of A and B are approximately normal? Why or why not?

A random sample of n = 250 measurements is drawn from a binomial population with a probability of success of .85.

  1. FindEPandσp
  2. Describe the shape of the sampling distribution ofp.
  3. Find

Question:Stock market participation and IQ. Refer to The Journal of Finance (December 2011) study of whether the decision to invest in the stock market is dependent on IQ, Exercise 3.46 (p. 182). The researchers found that the probability of a Finnish citizen investing in the stock market differed depending on IQ score. For those with a high IQ score, the probability is .44; for those with an average IQ score, the probability is .26; and for those with a low IQ score, the probability is .14.

a. In a random sample of 500 Finnish citizens with high IQ scores, what is the probability that more than 150 invested in the stock market?

b. In a random sample of 500 Finnish citizens with average IQ scores, what is the probability that more than 150 invest in the stock market?

c. In a random sample of 500 Finnish citizens with low IQ scores, what is the probability that more than 150 invest in the stock market?

Suppose a random sample of n measurements is selected from a population with u=100mean and variance role="math" localid="1657967387987" σ2=100. For each of the following values of n, give the mean and standard deviation of the sampling distribution of the sample mean.

  1. role="math" localid="1657967260825" n=4
  2. n=25
  3. n=100
  4. n=50
  5. n=500
  6. n=1000

:A random sample of n = 68 observations is selected from a population withμ=19.6and σ=3.2Approximate each of the following probabilities

a)pX¯19.6

b)pX¯19

c)pX¯20.1

d)p19.2X¯20.6


See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free