Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose a random sample of n = 25 measurements are selected from a population with mean μand standard deviation s. For each of the following values of μand role="math" localid="1651468116840" σ, give the values of μχ¯ and σχ¯.

  1. μ=100,σ=3
  2. μ=100,σ=25
  3. μ=20,σ=40
  4. μ=10,σ=100

Short Answer

Expert verified

Random sampling is a sampling strategy in which every sample has an equal chance to be selected. A basic random sample is intended to reflect a group in an unbiased manner.

Step by step solution

01

 Step 1: (a) The data is given below

The calculation is given below:

µ=10σχ=325=35=0.6

02

(b) The data is given below

The calculation is given below:

µχ-=100σχ=255=5

03

(c) The data is given below

The calculation is given below:

µχ-=20σχ=405=8

04

(d) The data is given below

The calculation is given below:

µχ-=10σχ=1005=20

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the computer to generate 500 samples, each containing n = 25 measurements, from a population that contains values of x equal to 1, 2, . . 48, 49, 50 Assume that these values of x are equally likely. Calculate the sample mean (χ¯) and median m for each sample. Construct relative frequency histograms for the 500 values of (χ¯)and the 500 values of m. Use these approximations to the sampling distributions of (χ¯)and m to answer the following questions:

a. Does it appear that and m are unbiased estimators of the population mean? [Note:μ=25.5]

b. Which sampling distribution displays greater variation?

Corporate sustainability of CPA firms. Refer to the Business and Society (March 2011) study on the sustainability behaviours of CPA corporations, Exercise 1.28 (p. 51). Corporate sustainability, recall, refers to business practices designed around social and environmental considerations. The level of support senior managers has for corporate sustainability was measured quantitatively on a scale ranging from 0 to 160 points. The study provided the following information on the distribution of levels of support for sustainability:μ=68 , σ=27. Now consider a random sample of 45 senior managers and let x represent the sample mean level of support.

a. Give the value of μx¯, the mean of the sampling distribution ofx¯ , and interpret the result.

b. Give the value ofσx¯ , the standard deviation of the sampling distribution of x¯, and interpret the result.

c. What does the Central Limit Theorem say about the shape of the sampling distribution ofx¯ ?

d. Find Px¯>65.

Switching banks after a merger. Banks that merge with others to form “mega-banks” sometimes leave customers dissatisfied with the impersonal service. A poll by the Gallup Organization found 20% of retail customers switched banks after their banks merged with another. One year after the acquisition of First Fidelity by First Union, a random sample of 250 retail customers who had banked with First Fidelity were questioned. Letp^ be the proportion of those customers who switched their business from First Union to a different bank.

  1. Find the mean and the standard deviation of role="math" localid="1658320788143" p^.
  2. Calculate the interval Ep^±2σp^.
  3. If samples of size 250 were drawn repeatedly a large number of times and determined for each sample, what proportion of the values would fall within the interval you calculated in part c?

Purchasing decision. A building contractor has decided to purchase a load of the factory-reject aluminum siding as long as the average number of flaws per piece of siding in a sample of size 35 from the factory's reject pile is 2.1 or less. If it is known that the number of flaws per piece of siding in the factory's reject pile has a Poisson probability distribution with a mean of 2.5, find the approximate probability that the contractor will not purchase a load of siding

Surface roughness of pipe. Refer to the Anti-CorrosionMethods and Materials(Vol. 50, 2003) study of the surface roughness of oil field pipes, Exercise 2.46 (p. 96). Recall that a scanning probe instrument was used to measure thesurface roughness x(in micrometers) of 20 sampled sectionsof coated interior pipe. Consider the sample mean,X¯.

  1. Assume that the surface roughness distribution has a mean of = 1.8 micrometers and a standard deviation of = .5 micrometer. Use this information to find theprobability thatexceeds 1.85 micrometers.
  2. The sample data are reproduced in the following table.Compute.
  3. Based on the result, part b, comment on the validity ofthe assumptions made in part a.

1.72

2.50

2.16

2.13

1.06

2.24

2.31

2.03

1.09

1.40

2.57

2.64

1.26

2.05

1.19

2.13

1.27

1.51

2.41

1.95

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free