Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose a random sample of n = 25 measurements are selected from a population with mean μand standard deviation s. For each of the following values of μand role="math" localid="1651468116840" σ, give the values of μχ¯ and σχ¯.

  1. μ=100,σ=3
  2. μ=100,σ=25
  3. μ=20,σ=40
  4. μ=10,σ=100

Short Answer

Expert verified

Random sampling is a sampling strategy in which every sample has an equal chance to be selected. A basic random sample is intended to reflect a group in an unbiased manner.

Step by step solution

01

 Step 1: (a) The data is given below

The calculation is given below:

µ=10σχ=325=35=0.6

02

(b) The data is given below

The calculation is given below:

µχ-=100σχ=255=5

03

(c) The data is given below

The calculation is given below:

µχ-=20σχ=405=8

04

(d) The data is given below

The calculation is given below:

µχ-=10σχ=1005=20

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:Consider a sample statistic A. As with all sample statistics, A is computed by utilizing a specified function (formula) of the sample measurements. (For example, if A were the sample mean, the specified formula would sum the measurements and divide by the number of measurements.

a. Describe what we mean by the phrase "the sampling distribution of the sample statistic A."

b. Suppose A is to be used to estimate a population parameterθ. What is meant by the assertion that A is an unbiased estimator of θ?

c. Consider another sample statistic, B. Assume that B is also an unbiased estimator of the population parameterα. How can we use the sampling distributions of A and B to decide which is the better estimator of θ?

d. If the sample sizes on which A and B are based are large, can we apply the Central Limit Theorem and assert that the sampling distributions of A and B are approximately normal? Why or why not?

Voltage sags and swells. Refer to the Electrical Engineering (Vol. 95, 2013) study of the power quality (sags and swells) of a transformer, Exercise 2.76 (p. 110). For transformers built for heavy industry, the distribution of the number of sags per week has a mean of 353 with a standard deviation of 30. Of interest is , that the sample means the number of sags per week for a random sample of 45 transformers.

a. FindEχ¯ and interpret its value.

b. FindVarχ¯.

c. Describe the shape of the sampling distribution ofχ¯.

d. How likely is it to observe a sample mean a number of sags per week that exceeds 400?

Study of why EMS workers leave the job. A study of fulltimeemergency medical service (EMS) workers publishedin the Journal of Allied Health(Fall 2011) found that onlyabout 3% leave their job in order to retire. (See Exercise3.45, p. 182.) Assume that the true proportion of all fulltime

EMS workers who leave their job in order to retire is p= .03. In a random sample of 1,000 full-time EMS workers, let represent the proportion who leave their job inorder to retire.

  1. Describe the properties of the sampling distribution ofp^.
  2. Compute P(p<0.05)Interpret this result.
  3. ComputeP(p>0.025)Interpret this result.

Analysis of supplier lead time. Lead timeis the time betweena retailer placing an order and having the productavailable to satisfy customer demand. It includes time for placing the order, receiving the shipment from the supplier, inspecting the units received, and placing them in inventory. Interested in average lead time,, for a particular supplier of men’s apparel, the purchasing department of a national department store chain randomly sampled 50 of the supplier’s lead times and found= 44 days.

  1. Describe the shape of the sampling distribution ofx¯.
  2. If μand σare really 40 and 12, respectively, what is the probability that a second random sample of size 50 would yieldx¯ greater than or equal to 44?
  3. Using the values forμ and σin part b, what is the probability that a sample of size 50 would yield a sample mean within the interval μ±2σn?

Question: Refer to Exercise 5.5, in which we found the sampling distribution of the sample median. Is the median an unbiased estimator of the population mean m?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free