Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Will the sampling distribution of x¯always be approximately normally distributed? Explain

Short Answer

Expert verified

Answer

A sampling distribution is statistics derived by continuous sampling from a greater populace.

Step by step solution

01

Step-by-Step Solution Step 1: Sampling distribution

A sampling distributionis a probabilistic distribution of a statistic resulting from the selection of randomized samples from a particular population. It reflects the distribution of frequency on how far apart certain events will be for a specific demographic.

02

Explanation

No, since the central limit theorem asserts that if the sample size increases sufficient, the sampling distributions of x overbar are nearly distributed normally.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Refer to Exercise 5.3. Assume that a random sample of n = 2 measurements is randomly selected from the population.

a. List the different values that the sample median m may assume and find the probability of each. Then give the sampling distribution of the sample median.

b. Construct a probability histogram for the sampling distribution of the sample median and compare it with the probability histogram for the sample mean (Exercise 5.3, part b).

Question:Fingerprint expertise. Refer to the Psychological Science (August 2011) study of fingerprint identification, Exercise 4.53 (p. 239). Recall that when presented with prints from the same individual, a fingerprint expert will correctly identify the match 92% of the time. Consider a forensic database of 1,000 different pairs of fingerprints, where each pair is a match.

a. What proportion of the 1,000 pairs would you expect an expert to correctly identify as a match?

b. What is the probability that an expert will correctly identify fewer than 900 of the fingerprint matches?

Variable life insurance return rates. Refer to the International Journal of Statistical Distributions (Vol. 1, 2015) study of a variable life insurance policy, Exercise 4.97 (p. 262). Recall that a ratio (x) of the rates of return on the investment for two consecutive years was shown to have a normal distribution, with μ=1.5, σ=0.2. Consider a random sample of 100 variable life insurance policies and letx¯represent the mean ratio for the sample.

a. Find E(x) and interpret its value.

b. Find Var(x).

c. Describe the shape of the sampling distribution ofx¯.

d. Find the z-score for the value x¯=1.52.

e. Find Px¯>1.52

f. Would your answers to parts a–e change if the rates (x) of return on the investment for two consecutive years was not normally distributed? Explain.

:A random sample of n = 68 observations is selected from a population withμ=19.6and σ=3.2Approximate each of the following probabilities

a)pX¯19.6

b)pX¯19

c)pX¯20.1

d)p19.2X¯20.6


Study of why EMS workers leave the job. A study of fulltimeemergency medical service (EMS) workers publishedin the Journal of Allied Health(Fall 2011) found that onlyabout 3% leave their job in order to retire. (See Exercise3.45, p. 182.) Assume that the true proportion of all fulltime

EMS workers who leave their job in order to retire is p= .03. In a random sample of 1,000 full-time EMS workers, let represent the proportion who leave their job inorder to retire.

  1. Describe the properties of the sampling distribution ofp^.
  2. Compute P(p<0.05)Interpret this result.
  3. ComputeP(p>0.025)Interpret this result.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free