Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Refer to Exercise 5.3.

  1. Show thatxis an unbiased estimator of.
  2. Findσx2.
  3. Find the probability that x will fall within2σxofμ.

Short Answer

Expert verified
  1. Proved that x is an unbiased estimator of
  2. 0.805
  3. 0.95

Step by step solution

01

List of probabilities

The list of the probabilities found in Exercise 3 corresponding to the respective means is shown below:

Mean

Probability

1

0.04

1.5

0.12

2

0.17

2.5

0.20

3

0.20

3.5

0.14

4

0.08

4.5

0.04

5

0.01

02

Calculation of the mean μ

The calculation of the meanandis shown below:

μx=xpx=10.2+20.3+30.2+40.2+50.1=0.2+0.6+0.6+0.8+0.5=2.7Ex=Expx=1×0.04+1.5×0.12+2×0.17+2.5×0.20+3×0.20+3.5×0.14+4×0.08+4.5×0.04+5×0.01=0.04+0.18+0.34+0.5+0.6+0.49+0.32+0.18+0.05=2.7

Therefore as the value ofμandExare 2.7,is an unbiased estimator of.

03

Calculation of the variance σx2

The calculation of the variance σx2is shown below:

σx2=mean-x2px=+1-2.720.04+1.5-2.720.12+2-2.720.172.5-2.720.20+3-2.720.20+3.5-2.720.14+4-2.720.08+4.5-2.720.04+5-2.720.01=0.1156+0.1728+0.0833+0.008+0.018+0.0896+0.1352+0.1296+0.0529=0.805

04

Calculation of the probability

In order to find out the probability, the2σxhas to be calculated where σxis the standard deviation. So,

σx=σx2=0.805=0.8972σx=2×0.897=1.794

Now the range is calculated below:

2σx+x=1.794+2.7=4.494x+2σx=2.7+1.794=0.906

Therefore the probability that will stay within the range (0.906, 4.494) is shown below:

Probability=p1+p15+p2+p2.5+p3+p3.5+p4+p4.5

localid="1658142468201" =0.04+0.12+0.17+0.20+0.20+0.14+0.08=0.95

Therefore the probability thatwill stay within the range (0.906, 4.494) is 0.95

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Voltage sags and swells. Refer to the Electrical Engineering (Vol. 95, 2013) study of the power quality (sags and swells) of a transformer, Exercise 2.76 (p. 110). For transformers built for heavy industry, the distribution of the number of sags per week has a mean of 353 with a standard deviation of 30. Of interest is , that the sample means the number of sags per week for a random sample of 45 transformers.

a. FindEχ¯ and interpret its value.

b. FindVarχ¯.

c. Describe the shape of the sampling distribution ofχ¯.

d. How likely is it to observe a sample mean a number of sags per week that exceeds 400?

Suppose xequals the number of heads observed when asingle coin is tossed; that is, x= 0 or x= 1. The population corresponding to xis the set of 0s and 1s generated when thecoin is tossed repeatedly a large number of times. Supposewe select n= 2 observations from this population. (That is,we toss the coin twice and observe two values of x.)

  1. List the three different samples (combinations of 0s and1s) that could be obtained.
  2. Calculate the value of X¯ffor each of the samples.
  3. Show that the sample proportion of 1s, p^, is equal to X¯.
  4. List the values thatp^can assume, and find the probabilitiesof observing these values.
  5. Construct a graph of the sampling distribution ofp^.

Analysis of supplier lead time. Lead timeis the time betweena retailer placing an order and having the productavailable to satisfy customer demand. It includes time for placing the order, receiving the shipment from the supplier, inspecting the units received, and placing them in inventory. Interested in average lead time,, for a particular supplier of men’s apparel, the purchasing department of a national department store chain randomly sampled 50 of the supplier’s lead times and found= 44 days.

  1. Describe the shape of the sampling distribution ofx¯.
  2. If μand σare really 40 and 12, respectively, what is the probability that a second random sample of size 50 would yieldx¯ greater than or equal to 44?
  3. Using the values forμ and σin part b, what is the probability that a sample of size 50 would yield a sample mean within the interval μ±2σn?

Will the sampling distribution of x¯always be approximately normally distributed? Explain

Producing machine bearings. To determine whether a metal lathe that produces machine bearings is properly adjusted, a random sample of 25 bearings is collected and the diameter of each is measured.

  1. If the standard deviation of the diameters of the bearings measured over a long period of time is .001 inch, what is the approximate probability that the mean diameter xof the sample of 25 bearings will lie within.0001 inch of the population mean diameter of the bearings?
  2. If the population of diameters has an extremely skewed distribution, how will your approximation in part a be affected?
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free