Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Errors in filling prescriptions A large number of preventable errors (e.g., overdoses, botched operations, misdiagnoses) are being made by doctors and nurses in U.S. hospitals. A study of a major metropolitan hospital revealed that of every 100 medications prescribed or dispensed, 1 was in error,

but only 1 in 500 resulted in an error that caused significant problems for the patient. It is known that the hospital prescribes and dispenses 60,000 medications per year.

  1. What is the expected proportion of errors per year at this hospital? The expected proportion of significant errors per year?
  2. Within what limits would you expect the proportion significant errors per year to fall?

Short Answer

Expert verified
  1. The expected proportion of errors per year at this hospital is 600 and the expected proportion of significant errors per year is 120.
  2. The proportion of significant errors per year falls between 0.00164 and 0.00236.

Step by step solution

01

Given information

There is a study of a major metropolitan hospital. The study revealed that in every 100 medications prescribed or dispensed, 1 is an error. But there is 1 error from a significant problem in every 500 medications. The hospital prescribed or dispensed 60000 medications per year.

02

Calculate the expected proportion

Consider the probability of having an error p=1100=0.01.

And the probability of having a significant error ps=1500=0.002.

a.

The expected proportion of error per year of the hospital is,

μ=np=60000×0.01=600

The expected proportion of significant error per year of the hospital is,

μs=nps=60000×0.002=120

03

Determine the fall limit

The limit of the expected proportion significant error per year fall is, ps±2ps1psn.

So,

ps±2ps1psn=0.002±2×0.002×10.00260000=0.0022×0.002×10.00260000,0.002+2×0.002×10.00260000=0.0020.000364,0.002+0.000364=0.00164,0.00236

Thus, the required limit is 0.00164,0.002360.00164,0.00236.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Refer to Exercise 5.3. Assume that a random sample of n = 2 measurements is randomly selected from the population.

a. List the different values that the sample median m may assume and find the probability of each. Then give the sampling distribution of the sample median.

b. Construct a probability histogram for the sampling distribution of the sample median and compare it with the probability histogram for the sample mean (Exercise 5.3, part b).

Analysis of supplier lead time. Lead timeis the time betweena retailer placing an order and having the productavailable to satisfy customer demand. It includes time for placing the order, receiving the shipment from the supplier, inspecting the units received, and placing them in inventory. Interested in average lead time,, for a particular supplier of men’s apparel, the purchasing department of a national department store chain randomly sampled 50 of the supplier’s lead times and found= 44 days.

  1. Describe the shape of the sampling distribution ofx¯.
  2. If μand σare really 40 and 12, respectively, what is the probability that a second random sample of size 50 would yieldx¯ greater than or equal to 44?
  3. Using the values forμ and σin part b, what is the probability that a sample of size 50 would yield a sample mean within the interval μ±2σn?

Question: Hotel guest satisfaction. Refer to the results of the 2015 North American Hotel Guest Satisfaction Index Study, Exercise 4.49 (p. 239). Recall that 15% of hotel guests were “delighted” with their experience (giving a rating of 10 out of 10); of these guests, 80% stated they would “definitely” recommend the hotel. In a random sample of 100 hotel guests, find the probability that fewer than 10 were delighted with their stay and would recommend the hotel.

Fecal pollution at Huntington Beach. California mandates fecal indicator bacteria monitoring at all public beaches. When the concentration of fecal bacteria in the water exceeds a certain limit (400 colony-forming units of fecal coliform per 100 millilitres), local health officials must post a sign (called surf zone posting) warning beachgoers of potential health risks. For fecal bacteria, the state uses a single-sample standard; if the fecal limit is exceeded in a single sample of water, surf zone posting is mandatory. This single-sample standard policy has led to a recent rash of beach closures in California. A study of the surf water quality at Huntington Beach in California was published in Environmental Science & Technology (September 2004). The researchers found that beach closings were occurring despite low pollution levels in some instances, while in others, signs were not posted when the fecal limit was exceeded. They attributed these "surf zone posting errors" to the variable nature of water quality in the surf zone (for example, fecal bacteria concentration tends to be higher during ebb tide and at night) and the inherent time delay between when a water sample is collected and when a sign is posted or removed. To prevent posting errors, the researchers recommend using an averaging method rather than a single sample to determine unsafe water quality. (For example, one simple averaging method is to take a random sample of multiple water specimens and compare the average fecal bacteria level of the sample with the limit of 400 CFU/100 mL to determine whether the water is safe.) Discuss the pros and cons of using the single sample standard versus the averaging method. Part of your discussion should address the probability of posting a sign when the water is safe and the probability of posting a sign when the water is unsafe. (Assume that the fecal bacteria concentrations of water specimens at Huntington Beach follow an approximately normal distribution.

Will the sampling distribution of x¯always be approximately normally distributed? Explain

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free