Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:Who prepares your tax return? As part of a study on income tax compliance (Behavioral Research and Accounting, January 2015), researchers found that 37% of adult workers prepare their own tax return. Assume that this percentage applies to all U.S. adult workers. Now consider a random sample of 270 adult workers.

a. Find the probability that more than 112 of the workers prepare their own tax return.

b. Find the probability that between 100 and 150 of the workers prepare their own tax return

Short Answer

Expert verified
  1. The probability that more than 112 of the workers prepare their own tax return is zero.
  2. The probability that between 100 and 150 of the workers prepare their own tax return is zero.

Step by step solution

01

Given Information

The proportion of adult workers is given by

The number of sample size is

The standard deviation of the sampling distribution is computed as

σp^=p1-pn=0.37×0.63270=0.0017

So, p^ is normally distributed with mean of 0.37 and a standard deviation of 0.0017.

02

(a) Compute the probability

The probability that more than 112 of the workers is computed as

03

(b) Identifying the probability

The probability that between 100 and 150 of the workers is computed as

100<p^<150=p100-0.370.0017<p^-pσp^<150-0.370.0017=p58605.88<z<88017.64=pz88017.64-pz58605.88=1-1=0

Hence, the probability is 0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:Piercing rating of fencing safety jackets. A manufacturer produces safety jackets for competitive fencers. These jackets are rated by the minimum force, in newtons, that will allow a weapon to pierce the jacket. When this process is operating correctly, it produces jackets that have ratings with an average of 840 newtons and a standard deviation of 15 newtons. FIE, the international governing body for fencing, requires jackets to be rated at a minimum of 800 newtons. To check whether the process is operating correctly, a manager takes a sample of 50 jackets from the process, rates them, and calculatesx¯, the mean rating for jackets in the sample. She assumes that the standard deviation of the process is fixed but is worried that the mean rating of the process may have changed.

a. What is the sampling distribution of x¯if the process is still operating correctly?

Study of why EMS workers leave the job. A study of fulltimeemergency medical service (EMS) workers publishedin the Journal of Allied Health(Fall 2011) found that onlyabout 3% leave their job in order to retire. (See Exercise3.45, p. 182.) Assume that the true proportion of all fulltime

EMS workers who leave their job in order to retire is p= .03. In a random sample of 1,000 full-time EMS workers, let represent the proportion who leave their job inorder to retire.

  1. Describe the properties of the sampling distribution ofp^.
  2. Compute P(p<0.05)Interpret this result.
  3. ComputeP(p>0.025)Interpret this result.

Will the sampling distribution ofχ¯ always be approximately normally distributed? Explain

A random sample of n=900 observations is selected from a population with μ=100andσ=10

a. What are the largest and smallest values ofx¯ that you would expect to see?

b. How far, at the most, would you expect xto deviate from μ?

c. Did you have to know μto answer part b? Explain.

Levelness of concrete slabs. Geotechnical engineers use water-level "manometer" surveys to assess the levelness of newly constructed concrete slabs. Elevations are typically measured at eight points on the slab; the maximum differential between elevations is of interest. The Journal of Performance of Constructed Facilities (February 2005) published an article on the levelness of slabs in California residential developments. Elevation data collected for more than 1,300 concrete slabs before tensioning revealed that the maximum differential, x, has a mean of μ=0.53an inch and a standard deviation of σ=0.193an inch. Consider a sample of n = 50 slabs selected from those surveyed, and letX represent the sample's mean.

  1. Fully describe the sample sampling distribution of x.
  2. FindP(x¯>0.58)
  3. The study also revealed that the mean maximum differential of concrete slabs measured after tensioning and loading isμ=0.58 an inch. Suppose the sample data yieldx¯=0.59 is an inch. Comment on whether the sample measurements were obtained before or after tensioning and loading.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free