Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Hotel guest satisfaction. Refer to the results of the 2015 North American Hotel Guest Satisfaction Index Study, Exercise 4.49 (p. 239). Recall that 15% of hotel guests were “delighted” with their experience (giving a rating of 10 out of 10); of these guests, 80% stated they would “definitely” recommend the hotel. In a random sample of 100 hotel guests, find the probability that fewer than 10 were delighted with their stay and would recommend the hotel.

Short Answer

Expert verified

The probability that fewer than 10 () delighted with their stay and would recommend the hotel is 0.2676.

Step by step solution

01

Given information

Let p denotes the proportion of guests who were delighted with their stay and would recommend the hotel.

15% of guests were delighted with their experience, and of these, 80% would recommend the hotel

Therefore,

.

A random sample of size 100 is selected.

02

Computing the required probability

The probability that fewer than 10 () delighted with their stay and would recommend the hotel obtain as follows

Pp^<.10=Pp^-pσp^<0.10-pσp^=PZ<0.10-0.120.12×0.88100=PZ<-0.020.001056=PZ<-0.020.0324=PZ<-0.62=0.2676

In the z-table, the value at the intersection of -0.60 and 0.02 is the required probability.

Therefore, the required probability is 0.2676.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Downloading “apps” to your cell phone. Refer toExercise 4.173 (p. 282) and the August 2011 survey by thePew Internet & American Life Project. The study foundthat 40% of adult cell phone owners have downloadedan application (“app”) to their cell phone. Assume thispercentage applies to the population of all adult cell phoneowners.

  1. In a random sample of 50 adult cell phone owners, howlikely is it to find that more than 60% have downloadedan “app” to their cell phone?
  2. Refer to part a. Suppose you observe a sample proportionof .62. What inference can you make about the trueproportion of adult cell phone owners who have downloadedan “app”?
  3. Suppose the sample of 50 cell phone owners is obtainedat a convention for the International Association forthe Wireless Telecommunications Industry. How willyour answer to part b change, if at all?

Question:Fingerprint expertise. Refer to the Psychological Science (August 2011) study of fingerprint identification, Exercise 4.53 (p. 239). Recall that when presented with prints from the same individual, a fingerprint expert will correctly identify the match 92% of the time. Consider a forensic database of 1,000 different pairs of fingerprints, where each pair is a match.

a. What proportion of the 1,000 pairs would you expect an expert to correctly identify as a match?

b. What is the probability that an expert will correctly identify fewer than 900 of the fingerprint matches?

Plastic fill process. University of Louisville operators examined the process of filling plastic pouches of dry blended biscuit mix (Quality Engineering, Vol. 91, 1996). The current fill mean of the process is set at μ= 406 grams, and the process fills standard deviation is σ= 10.1 grams. (According to the operators, “The high level of variation is since the product has poor flow properties and is, therefore, difficult to fill consistently from pouch to pouch.”) Operators monitor the process by randomly sampling 36 pouches each day and measuring the amount of biscuit mix in each. Considerx the mean fill amount of the sample of 36 products. Suppose that on one particular day, the operators observe x= 400.8. One of the operators believes that this indicates that the true process fill mean for that day is less than 406 grams. Another operator argues thatμ = 406, and the small observed value is due to random variation in the fill process. Which operator do you agree with? Why?

Corporate sustainability of CPA firms. Refer to the Business and Society (March 2011) study on the sustainability behaviours of CPA corporations, Exercise 1.28 (p. 51). Corporate sustainability, recall, refers to business practices designed around social and environmental considerations. The level of support senior managers has for corporate sustainability was measured quantitatively on a scale ranging from 0 to 160 points. The study provided the following information on the distribution of levels of support for sustainability:μ=68 , σ=27. Now consider a random sample of 45 senior managers and let x represent the sample mean level of support.

a. Give the value of μx¯, the mean of the sampling distribution ofx¯ , and interpret the result.

b. Give the value ofσx¯ , the standard deviation of the sampling distribution of x¯, and interpret the result.

c. What does the Central Limit Theorem say about the shape of the sampling distribution ofx¯ ?

d. Find Px¯>65.

Refer to Exercise 5.3 and find E=(x)=μ. Then use the sampling distribution ofxfound in Exercise 5.3 to find the expected value ofx. Note thatE=(x)=μ.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free