Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Variable life insurance return rates. With a variable life insurance policy, the rate of return on the investment (i.e., the death benefit) varies from year to year. A study of these variable return rates was published in International Journal of Statistical Distributions (Vol. 1, 2015). A transformedratio of the return rates (x) for two consecutive years was shown to have a normal distribution, with μ=1.5 and role="math" localid="1660283206727" σ=0.2. Use the standard normal table or statistical software to find the following probabilities.

a.P(1.3<x<1.6)

b. P(x>1.4)

c. P(x<1.5)

Short Answer

Expert verified
  1. P1.3<x<1.6=0.5328
  2. role="math" localid="1660283402755" Px>1.4=0.6915

c. Px<1.5=0.50

Step by step solution

01

Given information

Variable life insurance return rates followa normal distribution withμ=1.5 andσ=0.2

02

Finding the z values

z=x-μσ=x-1.50.2

For, x = 1.6

Then,

z=x-μσ=1.6-1.50.2=0.5

For, x=1.3

Then,

z=x-μσ=1.3-1.50.2=-1

For, x=1.4

Then,

z=x-μσ=1.4-1.50.2=-0.5

For, x=1.5

Then,

z=x-μσ=1.5-1.50.2=0

03

Probability calculation when P(1.3<x<1.6)

a.

P1.3<x<1.6=Px<1.6-Px<1.3=Pz<0.5-Pz<-1=Pz<0.5-1-Pz<-1=0.6915-1-0.8413=0.6915-1+0.8413=0.5328P1.3<x<1.6=0.5328

Therefore, the value of P(1.3<x<1.6) is 0.5328.

04

Probability calculation when P(x>1.4)

Px>1.4=1-Px<1.4=1-Pz<-0.5=1-1-Pz<-0.5=0.6915Px>1.4=0.6915

Therefore, the value ofPx>1.4 is 0.6915.

05

Probability calculation when P(x<1.5)

b.

P(x<1.5)=P(z<0)=0.50P(x<1.5)=0.50

Therefore, the value of P(x<1.5) is 0.50.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find each of the following probabilities for the standard normal random variable z:

a.P(-z1)b.P(-1.96z1.96)c.P(-1645z1.645)d.P(-2z2)

Executive coaching and meeting effectiveness. Can executive coaching help improve business meeting effectiveness? This was the question of interest in an article published in Consulting Psychology Journal: Practice and

Research(Vol. 61, 2009). The goal of executive coaching is to reduce content behaviors (e.g., seeking information, disagreeing/ attacking) in favor of process behaviors (e.g., asking clarifying questions, summarizing). The study

reported that prior to receiving executive coaching, the percentage of observed content behaviors of leaders had a mean of 75% with a standard deviation of 8.5%. In contrast, after receiving executive coaching, the percentage of observed content behaviors of leaders had a mean of 52%

with a standard deviation of 7.5%. Assume that the percentage

of observed content behaviors is approximately normally distributed for both leaders with and without executive coaching. Suppose you observe 70% content behaviors by the leader of a business meeting. Give your opinion on whether or not the leader has received executive coaching.

Executive networking and firm performance. Refer to the Journal of Accounting Public Policy (Vol. 34, 2015) study of the impact of executive networking on firm performance, Exercise 2.101 (p. 117). Recall that firm performance was measured as annual return on equity (ROE), recorded as a percentage. The mean ROE for the firms studied was 13.93%, and the standard deviation was 21.65%. Assume that these values represent m and s for the population ROE distribution and that this distribution is normal. What value of ROE will be exceeded by 80% of the firms?

Elevator passenger arrivals. A study of the arrival process of people using elevators at a multilevel office building was conducted and the results reported in Building Services Engineering Research and Technology (October 2012). Suppose that at one particular time of day, elevator passengers arrive in batches of size 1 or 2 (i.e., either 1 or 2 people arrive at the same time to use the elevator). The researchers assumed that the number of batches, n, arriving over a specific time period follows a Poisson process with mean λ=1.1. Now let xn represent the number of passengers (either 1 or 2) in batch n and assume the batch size has probabilities p=P(xn=1)=0.4andq=P(xn=2)=0.6. Then, the total number of passengers arriving over a specific time period is y=x1+x2+...+xn. The researchers showed that if x1,x2,...xnare independent and identically distributed random variables and also independent of n, then y follows a compound Poisson distribution.

a. Find P(y=0), i.e., the probability of no arrivals during the time period. [Hint: y = 0 only when n = 0.]

b. Find P(y=1), i.e., the probability of only 1 arrival during the time period. [Hint: y = 1 only when n = 1 and x1=1.]

Detecting a computer virus attack. Chance (Winter 2004) presented basic methods for detecting virus attacks (e.g.,Trojan programs or worms) on a network computer that are sent from a remote host. These viruses reach the network through requests for communication (e.g., e-mail, Web chat, or remote log-in) that are identified as “packets.” For example, the “SYN flood” virus ties up the network computer by “flooding” the network with multiple packets. Cyber security experts can detect this type of virus attack if at least one packet is observed by a network sensor. Assume that the probability of observing a single packet sent from a new virus is only .001. If the virus actually sends 150 packets to a network computer, what is the probability that the virus is detected by the sensor?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free