Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Making high-stakes insurance decisions. The Journal of Economic Psychology (September 2008) published the results of a high-stakes experiment in which subjects were asked how much they would pay for insuring a valuable painting. The painting was threatened by fire and theft, hence, the need for insurance. To make the risk realistic, the subjects were informed that if it rained on exactly 24 days in July, the painting was considered to be stolen; if it rained on exactly 23 days in August, the painting was considered to be destroyed by fire. Although the probability of these two events, “fire” and “theft,” was ambiguous for the subjects, the researchers estimated their probabilities of occurrence at .0001. Rain frequencies for the months of July and August were shown to follow a Poisson distribution with a mean of 10 days per month.

a. Find the probability that it will rain on exactly 24 days in July.

b. Find the probability that it will rain on exactly 23 days in August.

c. Are the probabilities, parts a and b, good approximations to the probabilities of “fire” and “theft”?

Short Answer

Expert verified

a. The probability of rain for exactly 24 days in July is, 0.00007317

b. The probability of rain for exactly 23 days in August is, 0.000175661

c. Part(a) is a good approximation and is better than part(b)

Step by step solution

01

Given information

By the Journal of Economic Psychology (September 2008),

The rain frequencies of July and August follow a Poisson distribution with a mean of 10

The estimated probability of occurrence of two events fire and theft is 0.0001

02

Finding the probability

a.

x is a Poisson distribution with a mean of 10,

Here, rain on exactly 24 days in July, i.e., X=24andλ=10

Px=24=e-λλxx!=e-10102424!=0.00007317Px=24=0.00007317

Therefore, the probability of rain for exactly 24 days in July is, 0.00007317

03

Finding the probability

b.

x is a Poisson distribution with a mean of 10,

Here, rain on exactly 23 days in August, i.e.,x=23andλ=10

Px=24=e-λλxx!=e-10102423!=0.00017561Px=23=0.00017561

Therefore, the probability of rain for exactly 23 days in August is, 0.000175661

04

Finding which probability is a good approximation

c.

In the case, of part (a),

The approximate probability of rain for exactly 24 days in July is, 0.00007317, i.e., 0.0001

And, in the case of part (b),

The probability of rain for exactly 23 days in August is 0.000175661, i.e., 0.0002

So, probability in part(a) is very close to the exact probability given in the question, but in part(b) the probability differs more from the exact probability given in the question.

So, part(a) is a good approximation and is better than part(b)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

4.110 Manufacturing hourly pay rate. Government data indicate that the mean hourly wage for manufacturing workers in the United States is \(20.10 (Bureau of Labor Statistics, January 2016). Suppose the distribution of manufacturing wage rates nationwide can be approximated by a normal distribution with a standard deviation \)1.25 per hour. The first manufacturing firm contacted by a particular worker seeking a new job pays \(21.40 per hour.

a. If the worker were to undertake a nationwide job search, approximately what proportion of the wage rates would be greater than \)21.40 per hour?

b. If the worker were to randomly select a U.S. manufacturing firm, what is the probability the firm would pay more than $21.40 per hour?

c. The population median, call it η, of a continuous random

variable xis the value such that P(xη)=P(xη)=0.5that is, the median is the value such that half the area under the probability distribution lies above and half lies below it. Find the median of the random variable corresponding to the wage rate and compare it with the mean wage rate.

Errors in measuring truck weights. To help highway planners anticipate the need for road repairs and design futureconstruction projects, data are collected on the estimatedvolume and weight of truck traffic on specific roadways (Transportation Planning Handbook, 2016) using specialized “weigh-in-motion” equipment. In an experiment involving repeated weighing of a 27,907-pound truck, it wasfound that the weights recorded by the weigh-in-motionequipment were approximately normally distributed witha mean of 27,315 and a standard deviation of 628 pounds

(Minnesota Department of Transportation). It follows thatthe difference between the actual weight and recordedweight, the error of measurement, is normally distributedwith a mean of 592 pounds and a standard deviation of 628pounds.

a. What is the probability that the weigh-in-motion equipment understates the actual weight of the truck?

b. If a 27,907-pound truck was driven over the weigh-in-motion equipment 100 times, approximately howmany times would the equipment overstate the truck’sweight?

c. What is the probability that the error in the weightrecorded by the weigh-in-motion equipment for a27,907-pound truck exceeds 400 pounds?

d. It is possible to adjust (or calibrate) the weigh-in-motion equipment to control the mean error of measurement. At what level should the mean error beset so the equipment will understate the weight of a27,907-pound truck 50% of the time? Only 40% of thetime

Executive networking and firm performance. Refer to the Journal of Accounting Public Policy (Vol. 34, 2015) study of the impact of executive networking on firm performance, Exercise 2.101 (p. 117). Recall that firm performance was measured as annual return on equity (ROE), recorded as a percentage. The mean ROE for the firms studied was 13.93%, and the standard deviation was 21.65%. Assume that these values represent m and s for the population ROE distribution and that this distribution is normal. What value of ROE will be exceeded by 80% of the firms?

4.126 Wear-out of used display panels.Wear-out failure time ofelectronic components is often assumed to have a normaldistribution. Can the normal distribution be applied to thewear-out of used manufactured products, such as coloreddisplay panels? A lot of 50 used display panels was purchasedby an outlet store. Each panel displays 12 to 18 colorcharacters. Prior to the acquisition, the panels had been usedfor about one-third of their expected lifetimes. The data inthe accompanying table (saved in the file) give the failuretimes (in years) of the 50 used panels. Use the techniquesof this section to determine whether the used panel wear-outtimes are approximately normally distributed.

0.01 1.21 1.71 2.30 2.96 0.19 1.22 1.75 2.30 2.98 0.51

1.24 1.77 2.41 3.19 0.57 1.48 1.79 2.44 3.25 0.70 1.54

1.88 2.57 3.31 0.73 1.59 1.90 2.61 1.19 0.75 1.61 1.93

2.62 3.50 0.75 1.61 2.01 2.72 3.50 1.11 1.62 2.16 2.76

3.50 1.16 1.62 2.18 2.84 3.50

Blood diamonds. According to Global Research News (March 4, 2014), one-fourth of all rough diamonds produced in the world are blood diamonds, i.e., diamonds mined to finance war or an insurgency. (See Exercise 3.81, p. 200.) In a random sample of 700 rough diamonds purchased by a diamond buyer, let x be the number that are blood diamonds.

a. Find the mean of x.

b. Find the standard deviation of x.

c. Find the z-score for the value x = 200.

d. Find the approximate probability that the number of the 700 rough diamonds that are blood diamonds is less than or equal to 200.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free