Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Cell phone handoff behavior. Refer to the Journal of Engineering, Computing and Architecture (Vol. 3., 2009) study of cell phone handoff behavior, Exercise 3.47 (p. 183). Recall that a “handoff” describes the process of a cell phone moving from one base channel (identified by a color code) to another. During a particular driving trip, a cell phone changed channels (color codes) 85 times. Color code “b” was accessed 40 times on the trip. You randomly select 7 of the 85 handoffs. How likely is it that the cell phone accessed color code “b” only twice for these 7 handoffs?

Short Answer

Expert verified

19.31% is not most likely to have the cell phone accessed colorcode b only twice.

Step by step solution

01

Given information

Refer to the Journal of Engineering Computing and Architecture (Vol. 3., 2009), on a particular driving trip, a cell phone changes the channels (color codes) 85 times, i.e., N is 85, color code b was accessed 40 times on the trip, i.e., r is 40, and select 7 of the 85 handoffs are randomly selected, that is n is 7.

02

Calculate the probability that the cell phone accessed color code b only twice

The random variable x is the number of times the cell phone accessed color code b

Here, x follows a hypergeometric distribution withN=85,n=7andr=40

The probability mass function of x is given by,

role="math" localid="1659709074655" Px=rxN-rn-xNn

So,

x=2

Px=2=40285-407-2857=402455857=780×12217594935847320=9529720204935847320

=0.1930716160.1931

Px=2=0.1931

Thus, the probability that the cell phone accessed color code b is only 0.1931.

Therefore, it is not very likely that the cell phone accessed colorcode b only twice because there is only a 19.31% chance of occurring.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Making high-stakes insurance decisions. The Journal of Economic Psychology (September 2008) published the results of a high-stakes experiment in which subjects were asked how much they would pay for insuring a valuable painting. The painting was threatened by fire and theft, hence, the need for insurance. To make the risk realistic, the subjects were informed that if it rained on exactly 24 days in July, the painting was considered to be stolen; if it rained on exactly 23 days in August, the painting was considered to be destroyed by fire. Although the probability of these two events, “fire” and “theft,” was ambiguous for the subjects, the researchers estimated their probabilities of occurrence at .0001. Rain frequencies for the months of July and August were shown to follow a Poisson distribution with a mean of 10 days per month.

a. Find the probability that it will rain on exactly 24 days in July.

b. Find the probability that it will rain on exactly 23 days in August.

c. Are the probabilities, parts a and b, good approximations to the probabilities of “fire” and “theft”?

178 Dutch elm disease. A nursery advertises that it has 10 elm treesfor sale. Unknown to the nursery, 3 of the trees have already been infected with Dutch elm disease and will die withina year.

a. If a buyer purchases 2 trees, what is the probability that bothtrees will be healthy?

b. Refer to part a. What is the probability that at least 1 of thetrees is infected?

Testing for spoiled wine. Suppose that you are purchasing cases of wine (12 bottles per case) and that, periodically, you select a test case to determine the adequacy of the bottles’ seals. To do this, you randomly select and test 3 bottles in the case. If a case contains 1 spoiled bottle of wine, what is the probability that this bottle will turn up in your sample?

Identify the type of random variable—binomial, Poisson or hypergeometric—described by each of the following probability distributions:

a.p(x)=5xe-5x!;x=0,1,2,...

b.p(x)=(6x)(.2)x(.8)6-x;x=0,1,2,...,6

c.p(x)=10!x!(10-x)!(.9)x(.1)10-x:x=0,1,2,...,10

Soft-drink dispenser. The manager of a local soft-drink bottling company believes that when a new beverage dispensing machine is set to dispense 7 ounces, it in fact dispenses an amount at random anywhere between 6.5and 7.5 ounces inclusive. Suppose has a uniform probability

distribution.

a.Is the amount dispensed by the beverage machine a discreteor a continuous random variable? Explain.

b. Graph the frequency function forX , the amount of beverage the manager believes is dispensed by the new machine when it is set to dispense 7 ounces.

c. Find the mean and standard deviation for the distribution graphed in part b, and locate the mean and theinterval μ±2σon the graph.

d. Find P(x7).

e. FindP(x<6) .

f. FindP(6.5x7.25) .

g. What is the probability that each of the next six bottles filled by the new machine will contain more than7.25 ounces of beverage? Assume that the amount of beverage dispensed in one bottle is independent of the amount dispensed in another bottle.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free