Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Male nannies. According to the International Nanny Association (INA), 4,176 nannies were placed in a job during a recent year (www.nanny.org). Of these, only 24 were men. In Exercise 3.12 (p. 169) you found the probability that a randomly selected nanny who was placed during a recent year is a man. Now use the hypergeometric distribution to find the probability that in a random sample of 10 nannies who were placed during a recent year, at least 1 is a man

Short Answer

Expert verified

The probability that among 10 nannies were placed, at least 1 is a man is 0.057.

Step by step solution

01

Given Information

The total number of nannies were placed in a job is

N = 4176

Number of men nannies is

M = 24

The sample size is n = 10

02

To find the probability of male nanny

pmalenanny=MN=244176=0.0057

Therefore, the probability of male nanny is 0.0057.

03

Compute the probability

A minimum of two steps are required.

Here, we use hypergeometric distribution to finding the probability,

px=0=2404176-2410-0417610=240415210417610=0.943

To get the required probability,

px1=1-px=0=1-0.943=0.057

Therefore, the probability is 0.057.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ranking PhD programs in economics. Refer to the SouthernEconomic Journal(April 2008) rankings of PhD programsin economics at 129 colleges and universities, Exercise 2.103(p. 117). Recall that the number of publications published byfaculty teaching in the PhD program and the quality of thepublications were used to calculate an overall productivityscore for each program. The mean and standard deviationof these 129 productivity scores were then used to computea z-score for each economics program. The data (z-scores)for all 129 economic programs are saved in the accompanying

file. A Minitab normal probability plot for the z-scores isshown below. Use the graph to assess whether the data areapproximately normal.

How many questionnaires to mail? The probability that a consumer responds to a marketing department’s mailed questionnaire is 0.4. How many questionnaires should be mailed if you want to be reasonably certain that at least 100 will be returned?

The random variable x has a normal distribution with μ=1000 and σ=10.

a. Find the probability that x assumes a value more than 2 standard deviations from its mean. More than 3 standard deviations from .μ

b. Find the probability that x assumes a value within 1 standard deviation of its mean. Within 2 standard deviations of μ.

c. Find the value of x that represents the 80th percentile of this distribution. The 10th percentile.

Blood diamonds. According to Global Research News (March 4, 2014), one-fourth of all rough diamonds produced in the world are blood diamonds, i.e., diamonds mined to finance war or an insurgency. (See Exercise 3.81, p. 200.) In a random sample of 700 rough diamonds purchased by a diamond buyer, let x be the number that are blood diamonds.

a. Find the mean of x.

b. Find the standard deviation of x.

c. Find the z-score for the value x = 200.

d. Find the approximate probability that the number of the 700 rough diamonds that are blood diamonds is less than or equal to 200.

Voltage sags and swells. Refer to the Electrical Engineering (Vol. 95, 2013) study of the power quality of a transformer, Exercise 2.127 (p. 132). Recall that two causes of poor power quality are “sags” and “swells.”. (A sag is an unusual dip, and a swell is an unusual increase in the voltage level of a transformer.) For Turkish transformers built for heavy industry, the mean number of sags per week was 353, and the mean number of swells per week was 184. As in Exercise 2.127, assume the standard deviation of the sag distribution is 30 sags per week, and the standard deviation of the swell distribution is 25 swells per week. Also, assume that the number of sags and number of swells is both normally distributed. Suppose one of the transformers is randomly selected and found to have 400 sags and 100 swells in a week.

a. What is the probability that the number of sags per week is less than 400?

b. What is the probability that the number of swells per week is greater than 100?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free