Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Bridge inspection ratings. According to the National Bridge Inspection Standard (NBIS), public bridges over 20 feet in length must be inspected and rated every 2 years. The NBIS rating scale ranges from 0 (poorest rating) to 9 (highest rating). University of Colorado engineers used a probabilistic model to forecast the inspection ratings of all major bridges in Denver (Journal of Performance of Constructed Facilities, February 2005). For the year 2020, the engineers forecast that 9% of all major Denver bridges will have ratings of 4 or below.

  1. Use the forecast to find the probability that in a random sample of 10 major Denver bridges, at least 3 will have an inspection rating of 4 or below in 2020.

  2. Suppose that you actually observe 3 or more of the sample of 10 bridges with inspection ratings of 4 or below in 2020. What inference can you make? Why?

Short Answer

Expert verified
  1. The probability that at least 3 will have an inspection rating of 4 or below in 2020 is 0.05404.

  2. The probability that 3 or more of the sample of 10 bridges with inspection ratings of 4 or below in 2020 is 0.9912.

Step by step solution

01

Given information

9% is the probability of success,

The probability of success and the probability of failure are,

p=1-q=1-0.09=0.91

02

(a) Describing the probability

Here, the probability that at least 3 is,

The formula for the probability is,

pXx=nCxpx1-pn-x

Substituting the values we get,

localid="1664385878414" pX3=x=31010Cx0.09x1-0.0910-x=0.05404

03

(b) Inspection rating

The probability of 3 or more of a sample of 10 is,

pX3=x=03PX=x

Substituting the values, we get

Px3=0.9912

There are 3 or more of the sample of 10 bridges with an inspection rating 4 or below in 2020 is 0.9912.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Industrial filling process. The characteristics of an industrialfilling process in which an expensive liquid is injectedinto a container were investigated in the Journal of QualityTechnology(July 1999). The quantity injected per containeris approximately normally distributed with mean 10

units and standard deviation .2 units. Each unit of fill costs\(20 per unit. If a container contains less than 10 units (i.e.,is underfilled), it must be reprocessed at a cost of \)10. A properly filled container sells for $230.

a. Find the probability that a container is underfilled. Notunderfilled.

b. A container is initially underfilled and must be reprocessed.Upon refilling, it contains 10.60 units. Howmuch profit will the company make on thiscontainer?

c. The operations manager adjusts the mean of the fillingprocess upward to 10.60 units in order to makethe probability of underfilling approximately zero.

Under these conditions, what is the expected profit percontainer?

4.127 Rankings of research universities. Refer to the CollegeChoice2015 Rankings of National Research Universities,Exercise 2.110 (p. 125). Data on academic reputation scores for the top 50 research universities (saved in the file) are listed in the accompanying table. Would you recommend using the normal distribution to approximate the distribution of academic reputation scores?

99 92 94 95 97 91 91 92 92 89 84 85 100 87 83

83 89 79 94 79 79 87 76 67 76 76 76 70 74 64

74 69 66 72 65 76 64 65 61 69 62 69 52 64 64

47 60 57 63 62

Buy-side vs. sell-side analysts’ earnings forecasts. Financial analysts who make forecasts of stock prices are categorized as either “buy-side” analysts or “sell-side” analysts. Refer to the Financial Analysts Journal (July/August 2008) comparison of earnings forecasts of buy-side and sell-side analysts, Exercise 2.86 (p. 112). The mean and standard deviation of forecast errors for both types of analysts are reproduced in the table. Assume that the distribution of forecast errors are approximately normally distributed.

a. Find the probability that a buy-side analyst has a forecast error of +2.00 or higher.

b. Find the probability that a sell-side analyst has a forecast error of +2.00 or higher


Buy-Side Analysts

Sell-Side Analysts

Mean

0.85

-0.05

Standard Deviation

1.93

0.85

How many questionnaires to mail? The probability that a consumer responds to a marketing department’s mailed questionnaire is 0.4. How many questionnaires should be mailed if you want to be reasonably certain that at least 100 will be returned?

Privacy and information sharing. Refer to the Pew Internet & American Life Project Survey (January 2016), Exercise 4.48 (p. 239). The survey revealed that half of all U.S. adults would agree to participate in a free cost-saving loyalty card program at a grocery store, even if the store could potentially sell these data on the customer’s shopping habits to third parties. In a random sample of 250 U.S. adults, let x be the number who would participate in the free loyalty card program.

a. Find the mean of x. (This value should agree with your answer to Exercise 4.48c.)

b. Find the standard deviation of x.

c. Find the z-score for the value x = 200.

d. Find the approximate probability that the number of the 250 adults who would participate in the free loyalty card program is less than or equal to 200.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free