Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Mailrooms contaminated with anthrax. During autumn 2001, there was a highly publicized outbreak of anthrax cases among U.S. Postal Service workers. In Chance (Spring 2002), research statisticians discussed the problem of sampling mailrooms for the presence of anthrax spores. Let x equal the number of mailrooms contaminated with anthrax spores in a random sample of n mailrooms selected from a population of N mailrooms. The researchers showed that the probability distribution for x is given by the formula P(x)=(kx)(N-kn-x)(Nn)

where k is the number of contaminated mailrooms in the population. (In Section 4.4 we identify this probability distribution as the hypergeometric distribution.) Suppose N = 100, n = 3, and k = 20.

a. Find p(0).

b. Find p(1)

. c. Find p(2).

d. Find p(3)

Short Answer

Expert verified

a.p(0)=0.508

b.p1=0.3908

c.p(2)=0.094

d.p(4)=0.0007

Step by step solution

01

Given information

Here the distribution of xfollows hyper geometric distribution. The probability mass function ofx is P(x)=(kx)(N-kn-x)(Nn)

02

Finding the value of  

a.

p0=200100-203-01003=2008031003=0.508

Thus, the required value is 0.508.

03

Finding the value of p(1) 

b.

p1=201100-203-11003=2018021003=0.3908

Thus, the required value is 0.3908.

04

Finding the value of p(2)

c.

p1=202100-203-21003=2028011003=0.094

Thus, the required value is 0.94.

05

Finding the value of p(3)

d.

p3=203100-203-31003=2038001003=0.0007

Thus, the required value is 0.0007.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Making high-stakes insurance decisions. The Journal of Economic Psychology (September 2008) published the results of a high-stakes experiment in which subjects were asked how much they would pay for insuring a valuable painting. The painting was threatened by fire and theft, hence, the need for insurance. To make the risk realistic, the subjects were informed that if it rained on exactly 24 days in July, the painting was considered to be stolen; if it rained on exactly 23 days in August, the painting was considered to be destroyed by fire. Although the probability of these two events, โ€œfireโ€ and โ€œtheft,โ€ was ambiguous for the subjects, the researchers estimated their probabilities of occurrence at .0001. Rain frequencies for the months of July and August were shown to follow a Poisson distribution with a mean of 10 days per month.

a. Find the probability that it will rain on exactly 24 days in July.

b. Find the probability that it will rain on exactly 23 days in August.

c. Are the probabilities, parts a and b, good approximations to the probabilities of โ€œfireโ€ and โ€œtheftโ€?

Lead in metal shredder residue. On the basis of data collectedfrom metal shredders across the nation, the amount xof extractable lead in metal shredder residue has an approximateexponential distribution with meanฮธ= 2.5 milligramsper liter (Florida Shredderโ€™s Association).

a. Find the probability that xis greater than 2 milligramsper liter.

b. Find the probability that xis less than 5 milligrams perliter.

Suppose x is a binomial random variable with n = 3 and p = .3.

  1. Calculate the value of p(x),role="math" localid="1653657859012" x=0,1,2,3,using the formula for a binomial probability distribution.
  2. Using your answers to part a, give the probability distribution for x in tabular form.

Executive networking and firm performance. Refer to the Journal of Accounting Public Policy (Vol. 34, 2015) study of the impact of executive networking on firm performance, Exercise 2.101 (p. 117). Recall that firm performance was measured as annual return on equity (ROE), recorded as a percentage. The mean ROE for the firms studied was 13.93%, and the standard deviation was 21.65%. Assume that these values represent m and s for the population ROE distribution and that this distribution is normal. What value of ROE will be exceeded by 80% of the firms?

Identify the type of continuous random variableโ€”uniform,normal, or exponentialโ€”described by each of the following probability density functions:

a.f(x)=e-x77;x>o

b.f(x)=120;5<x<25

c.f(x)=e-.5[x-10/5]252ฯ€

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free