Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Types of finance random variables. Security analysts are professionals who devote full-time efforts to evaluating the investment worth of a narrow list of stocks. The following variables are of interest to security analysts. Which are discrete and which are continuous random variables?

a. The closing price of a particular stock on the New York Stock Exchange.

b. The number of shares of a particular stock that are traded each business day.

c. The quarterly earnings of a particular firm.

d. The percentage change in earnings between last year and this year for a particular firm.

e. The number of new products introduced per year by a firm.

f. The time until a pharmaceutical company gains approval from the U.S. Food and Drug Administration to market a new drug.

Short Answer

Expert verified
  1. Discrete
  2. Discrete
  3. Discrete
  4. Continuous
  5. Discrete
  6. Continuous

Step by step solution

01

Specifying why the closing price of a stock is a discrete random variable

a.

The closing price of a stock is always regarded as a discrete variable.It is easily countable. Whenever something is countable and does not take infinite values within a range, it becomes discrete.

02

Specifying why the number of shares of a stock is a discrete random variable

b.

The number of shares of a stock is always regarded as a discrete variable. It is directly countable. As it is countable and does not take infinite values within a range, it becomes discrete.

03

Specifying why quarterly earningsare a discrete random variable 

c.

Quarterly earnings are always regarded as a discrete variable. The quarterly earnings are countable as they are calculated after every quarter ends. As it does not take infinite values within a range, it becomes discrete.

04

Specifying why the percentage change in earnings is a continuous random variable

d.

The percentage change in earnings is always regarded as a continuous variable.It always changes every year, and as it can take infinite values, it becomes continuous.

05

Specifying why the number of new products is a discrete random variable 

e.

The number of new products is always regarded as a discrete variable.It is countable.Whenever something is countable and does not take infinite values within a range, it becomes discrete.

06

Specifying why the time of getting an approval is a continuous random variable

f. The time of getting approval is always regarded as a continuous variable.It can take any form of infinite value, and so, it becomes continuous.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Shear strength of rock fractures. Understanding the characteristics

of rock masses, especially the nature of the fracturesis essential when building dams and power plants.The shear strength of rock fractures was investigated inEngineering Geology(May 12, 2010). The Joint RoughnessCoefficient (JRC) was used to measure shear strength.Civil engineers collected JRC data for over 750 rock fractures.The results (simulated from information provided in the article) are summarized in the accompanying SPSShistogram. Should the engineers use the normal probabilitydistribution to model the behavior of shear strength forrock fractures? Explain

Waiting for a car wash. An automatic car wash takes exactly 5 minutes to wash a car. On average, 10 cars per hour arrive at the car wash. Suppose that 30 minutes before closing time, 5 cars are in line. If the car wash is in continuous use until closing time, will anyone likely be in line at closing time?

Buy-side vs. sell-side analystsโ€™ earnings forecasts. Financial analysts who make forecasts of stock prices are categorized as either โ€œbuy-sideโ€ analysts or โ€œsell-sideโ€ analysts. Refer to the Financial Analysts Journal (July/August 2008) comparison of earnings forecasts of buy-side and sell-side analysts, Exercise 2.86 (p. 112). The mean and standard deviation of forecast errors for both types of analysts are reproduced in the table. Assume that the distribution of forecast errors are approximately normally distributed.

a. Find the probability that a buy-side analyst has a forecast error of +2.00 or higher.

b. Find the probability that a sell-side analyst has a forecast error of +2.00 or higher


Buy-Side Analysts

Sell-Side Analysts

Mean

0.85

-0.05

Standard Deviation

1.93

0.85

Industrial filling process. The characteristics of an industrialfilling process in which an expensive liquid is injectedinto a container were investigated in the Journal of QualityTechnology(July 1999). The quantity injected per containeris approximately normally distributed with mean 10

units and standard deviation .2 units. Each unit of fill costs\(20 per unit. If a container contains less than 10 units (i.e.,is underfilled), it must be reprocessed at a cost of \)10. A properly filled container sells for $230.

a. Find the probability that a container is underfilled. Notunderfilled.

b. A container is initially underfilled and must be reprocessed.Upon refilling, it contains 10.60 units. Howmuch profit will the company make on thiscontainer?

c. The operations manager adjusts the mean of the fillingprocess upward to 10.60 units in order to makethe probability of underfilling approximately zero.

Under these conditions, what is the expected profit percontainer?

Flaws in the plastic-coated wire. The British Columbia Institute of Technology provides on its Web site (www.math.bcit.ca) practical applications of statistics at mechanical engineering firms. The following is a Poisson application. A roll of plastic-coated wire has an average of .8 flaws per 4-meter length of wire. Suppose a quality-control engineer will sample a 4-meter length of wire from a roll of wire 220 meters in length. If no flaws are found in the sample, the engineer will accept the entire roll of wire. What is the probability that the roll will be rejected? What assumption did you make to find this probability?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free