Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Contaminated gun cartridges. A weapons manufacturer uses liquid fuel to produce gun cartridges. The fuel can get mixed with another liquid to produce a contaminated cartridge during the manufacturing process. A University of South Florida statistician hired by the company to investigate the level of contamination in the stored cartridges found that 23% of the cartridges in a particular lot were contaminated. Suppose you randomly sample (without replacement) gun cartridges from this lot until you find a contaminated one. Let x be the number of cartridges sampled until a contaminated one is found. It is known that the formula gives the probability distribution for x

p(x)=(.23)(.77)x-1,x=1,2,3

  1. Find p(1). Interpret this result.
  2. Find p(5). Interpret this result.
  3. Find p(x2). Interpret this result.

Short Answer

Expert verified
  1. 0.23
  2. 0.08
  3. 0.41

Step by step solution

01

Calculation of  p(1)

The probability of finding 1 contaminated gun cartridge is calculated below:

p(x)=(.23)(.77)x1p(1)=(.23)(.77)1=(.23)(.77)0=0.23

02

Interpretation of the value of p(1)

Here the value p(1)from the calculation is 0.23.This value indicates that the probability of finding a contaminated cartridge from the sample of cartridges is 0.23.

03

(b) Calculation of p(5)

The probability of finding 5 contaminated cartridges from the sample is calculated below:

p(x)=(.23)(.77)x-1p(5)=(.23)(.77)5-1=(.23)(.77)4=0.08

04

Interpretation of the value of p(5)

Here the value of p(5) the above calculation is found to be 0.08.This value indicates that the probability of finding five contaminated gun cartridges from the sample of several cartridges is 0.08.

05

(c) Calculation of p(x≥2)

The probability of finding a maximum of two contaminated cartridges is calculated below:

p(x2)=(.23)(.77)x-1p(1)=(.23)(.77)1-1=(.23)(.77)0=0.23

p(2)=(.23)(.77)2-1=(.23)(.77)1=0.18p(x2)=p(1)+p(2)=0.23+0.18=0.41

06

Interpretation of the value of p(x≥2)

Here, the calculationp(x2)is found to be 0.41.This value indicates that the probability of finding a maximum of two contaminated gun cartridges by the researchers from the sample is 0.41.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Hotels’ use of ecolabels. Refer to the Journal of Vacation Marketing (January 2016) study of travelers’ familiarity with ecolabels used by hotels, Exercise 2.64 (p. 104). Recall that adult travelers were shown a list of 6 different ecolabels, and asked, “Suppose the response is measured on a continuous scale from 10 (not familiar at all) to 50 (very familiar).” The mean and standard deviation for the Energy Star ecolabel are 44 and 1.5, respectively. Assume the distribution of the responses is approximately normally distributed.

a. Find the probability that a response to Energy Star exceeds 43.

b. Find the probability that a response to Energy Star falls between 42 and 45.

c. If you observe a response of 35 to an ecolabel, do you think it is likely that the ecolabel was Energy Star? Explain.

Ages of “dot-com” employees. The age (in years) distribution for the employees of a highly successful “dot-com” company headquartered in Atlanta is shown in the next table. An employee is to be randomly selected from this population.

  1. Can the relative frequency distribution in the table be interpreted as a probability distribution? Explain.
  2. Graph the probability distribution.
  3. What is the probability that the randomly selected employee is over 30 years of age? Over 40 years of age? Under 30 years of age?
  4. What is the probability that the randomly selected employee will be 25 or 26 years old?

4.113 Credit/debit card market shares. The following table reports the U.S. credit/debit card industry’s market share data for 2015. A random sample of 100 credit/debit card users is to be questioned regarding their satisfaction with

their card company. For simplification, assume that each card user carries just one card and that the market share percentages are the percentages of all card customers that carry each brand.

Credit debit Card

Market Share %

Visa

59

MasterCard

26

Discover

2

American Express

13

Source:Based on Nilson Reportdata, June 2015.

a. Propose a procedure for randomly selecting the 100 card users.

b. For random samples of 100 card users, what is the expected number of customers who carry Visa? Discover?

c. What is the approximate probability that half or more of the sample of card users carry Visa? American Express?

d. Justify the use of the normal approximation to the binomial in answering the question in part c.

When to replace a maintenance system. An article in the Journal of Quality of Maintenance Engineering (Vol. 19,2013) studied the problem of finding the optimal replacement policy for a maintenance system. Consider a system that is tested every 12 hours. The test will determine whether there are any flaws in the system. Assume that the probability of no flaw being detected is .85. If a flaw (failure) is detected, the system is repaired. Following the fifth failed test, the system is completely replaced. Now, let x represent the number of tests until the system needs to be replaced.

a. Give the probability distribution for x as a formula.

b. Find the probability that the system needs to be replaced after 8 total tests.

Assume that xis a binomial random variable with n = 100

and p = 5. Use the normal probability distribution to approximate

the following probabilities:

a.P(x48)

b.P(50x65)

c.P(x70)

d.P(55x58)

e.P(x=62)

f.P(x49orx72)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free