Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

NHTSA crash tests. Refer to the NHTSA crash tests of new car models, Exercise 4.3 (p. 217). A summary of the driver-side star ratings for the 98 cars in the file is reproduced in the accompanying Minitab printout. Assume that one of the 98 cars is selected randomly and let x equal the number of stars in the car’s driver-side star rating.

  1. Use the information in the printout to find the probability distribution for x.
  2. FindP(x=5).
  3. FindP(x2).
  4. Find μ=E(x)and practically interpret the result.

Short Answer

Expert verified

a.

b. 0.1837

c.0.0408

d.3.9286

Step by step solution

01

(a) Formula for calculating P(x)

The formula for calculating the probability distribution isshown below:

P(x)=Probability100

Here role="math" localid="1653643443072" X,it represents the stars.

02

Computing the P(x)

The calculation P(x)is shown below:

Therefore, the probability distribution of the associated number of stars is 0.0408, 0.1735, 0.6020 and 0.1837.

03

(b) Formula for calculating P(x=5)

The formula for calculating the P(x=5)is shown below:

P(x=X)=Probability100

Here, asX it is equal to 5, the associated probability in percentage, 18.37, must be considered.

04

Computing the P(x=5)

The calculation P(x=5)is shown below:

P(x=5)=18.37100=0.1837

Therefore, the P(x=5) is 0.1837.

05

(c) Formula for calculating P(x≤2)

The formula for calculating the P(x2)is shown below:

P(x2)=P(x=0)+P(x=1)+P(x=2)

Here the summation of the probabilities fromX=0 toX=2 must be done.

06

Computing the P(x≤2)

The calculation P(x2)is shown below:

P(x2)=0100+0100+4.08100=4.08100=0.0408

Therefore, the P(x2) is 0.0408.

07

(d) Computing the μ=E(x)

μ=E(x)=E[xp(x)]=2×0.0408+3×0.1735+4×0.6020+5×0.1837=3.9286

Therefore, the μ=E(x) is 3.9286.

08

Interpretation of the value

The valueμ=E(x) is found to be 3.9286, which is the average. It indicates that whenever a car is selected at random, there will be a high probability for it to possess 3.9286 stars.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

4.113 Credit/debit card market shares. The following table reports the U.S. credit/debit card industry’s market share data for 2015. A random sample of 100 credit/debit card users is to be questioned regarding their satisfaction with

their card company. For simplification, assume that each card user carries just one card and that the market share percentages are the percentages of all card customers that carry each brand.

Credit debit Card

Market Share %

Visa

59

MasterCard

26

Discover

2

American Express

13

Source:Based on Nilson Reportdata, June 2015.

a. Propose a procedure for randomly selecting the 100 card users.

b. For random samples of 100 card users, what is the expected number of customers who carry Visa? Discover?

c. What is the approximate probability that half or more of the sample of card users carry Visa? American Express?

d. Justify the use of the normal approximation to the binomial in answering the question in part c.

Tracking missiles with satellite imagery.The Space-BasedInfrared System (SBIRS) uses satellite imagery to detect andtrack missiles (Chance, Summer 2005). The probability thatan intruding object (e.g., a missile) will be detected on aflight track by SBIRS is .8. Consider a sample of 20 simulated tracks, each with an intruding object. Let x equal the numberof these tracks where SBIRS detects the object.

a. Demonstrate that x is (approximately) a binomial randomvariable.

b. Give the values of p and n for the binomial distribution.

c. Find P(x=15), the probability that SBIRS will detect the object on exactly 15 tracks.

d. Find P(x15), the probability that SBIRS will detect the object on at least 15 tracks.

e. FindE(x) and interpret the result.

The Apprenticecontestants’ performance ratings. Referto the Significance(April 2015) study of contestants’ performanceson the United Kingdom’s version of the TVshow, The Apprentice, Exercise 2.9 (p. 73). Recall thatthe performance of each of 159 contestants was rated ona 20-point scale. Contestants were also divided into twogroups: those who played for a job and those who playedfor a businesspartnership. These data (simulated, based onstatistics reportedin the article) are saved in the accompanyingfile. Descriptive statistics for each of the two groupsof contestants are displayed in the accompanying Minitabprintout.

a. Determine whether the performance ratings of contestantswho played for a job are approximately normallydistributed.

b. Determine whether the performance ratings of contestantswho played for a business partnership are approximatelynormally distributed.

Descriptive Statistics: Rating

Variable Rating

Price

N

Mean

St.Dev

Minimum

Q

1

median

Q3

Maximum

IQ

R

Job

99

7.879

4.224

1

4

9

11

20

7

Partner

60

8.883

4.809

1

5

8

12

20

7

Variable life insurance return rates. With a variable life insurance policy, the rate of return on the investment (i.e., the death benefit) varies from year to year. A study of these variable return rates was published in International Journal of Statistical Distributions (Vol. 1, 2015). A transformedratio of the return rates (x) for two consecutive years was shown to have a normal distribution, with μ=1.5 and role="math" localid="1660283206727" σ=0.2. Use the standard normal table or statistical software to find the following probabilities.

a.P(1.3<x<1.6)

b. P(x>1.4)

c. P(x<1.5)

Assume that xhas an exponential distribution withθ=3.

Find

a.P(x1)

b.P(x>1)

c.P(x=1)

d.P(x6)

e.P(2x10)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free