Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Estimating demand for white bread. A bakery has determined that the number of loaves of its white bread demanded daily has a normal distribution with mean 7,200 loaves and standard deviation 300 loaves. Based on cost considerations, the company has decided that its best strategy is to produce a sufficient number of loaves so that it will fully supply demand on 94% of all days.

a. How many loaves of bread should the company produce?

b. Based on the production in part a, on what percentage of days will the company be left with more than 500 loaves of unsold bread?

Short Answer

Expert verified

a. The number of loaves of bread the company produced is 7668.

b. The percentage of days that the company is left with more than 500 loaves is 45.62%.

Step by step solution

01

Given information

A bakery has determined that the number of loaves of its white bread demanded daily has a normal distribution with mean 7,200 loaves and standard deviation 300 loaves.

02

Calculating the number of loaves of bread  

a,

Let x be the random variable that the number of the loaves of the white bread demanded daily.

Consider, μ2σ and σ=300

The fully supply demand is on 94% of all days.

Consider,

P(xx0)=0.94

From z score table, the value of z that corresponds to the probability is 1.56.

The number of loaves of bread the company should produce is obtained below:

z=x0μσ

role="math" localid="1658221665216" 1.56=x07200300x0=468+7200=7668

Thus, the number of loaves of bread the company produced is 7668.

03

Calculating the percentage of days 

b.

The company produces a total of 7668 loaves, then the company is left with more than 500 loaves is obtained if the demand is less than 7668 is7668500=7168

The probability is obtained below:

role="math" localid="1658221647072" P(x<7168)=P(z<71687200300)=P(z<32300)=P(z<0.11)

=0.50.0438=0.4562

Thus, the percentage of days that the company is left with more than 500 loaves is 45.62%.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose the random variable x is best described by a normal distribution with μ=30 and σ=4. Find the z-score that corresponds to each of the following x values:

a.x=20b.x=30c.x=2.75d.x=15e.x=35f.x=25

Apps not working on smartphones. In a Pew Research Center survey titled U.S. Smartphone Use in 2015, more than 2,000 smartphone users were asked how often the applications (apps) they downloaded on their cell phones were not working correctly. Responses were recorded as follows: 1 = Frequently, 2 = Occasionally, 3 = Rarely, and 4 = Never. The probability distribution for the numerical response, x, is provided in the table.

  1. Verify that the properties of a probability distribution for a discrete random variable are satisfied.
  2. Find P(x>2)
  3. Find E(x). Interpret this value practically.

Assume that xis a binomial random variable with n = 100

and p = 5. Use the normal probability distribution to approximate

the following probabilities:

a.P(x48)

b.P(50x65)

c.P(x70)

d.P(55x58)

e.P(x=62)

f.P(x49orx72)

If x is a binomial random variable, compute for each of the following cases:

  1. n = 4, x = 2, p = .2
  2. n = 3, x = 0, p = .7
  3. n = 5, x = 3, p = .1
  4. n = 3, x = 1, p = .9
  5. n = 3, x = 1, p = .3
  6. n = 4, x = 2, p = .6

Contaminated gun cartridges. A weapons manufacturer uses liquid fuel to produce gun cartridges. The fuel can get mixed with another liquid to produce a contaminated cartridge during the manufacturing process. A University of South Florida statistician hired by the company to investigate the level of contamination in the stored cartridges found that 23% of the cartridges in a particular lot were contaminated. Suppose you randomly sample (without replacement) gun cartridges from this lot until you find a contaminated one. Let x be the number of cartridges sampled until a contaminated one is found. It is known that the formula gives the probability distribution for x

p(x)=(.23)(.77)x-1,x=1,2,3

  1. Find p(1). Interpret this result.
  2. Find p(5). Interpret this result.
  3. Find p(x2). Interpret this result.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free