Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing for spoiled wine. Suppose that you are purchasing cases of wine (12 bottles per case) and that, periodically, you select a test case to determine the adequacy of the bottles’ seals. To do this, you randomly select and test 3 bottles in the case. If a case contains 1 spoiled bottle of wine, what is the probability that this bottle will turn up in your sample?

Short Answer

Expert verified

The probability that the spoiled bottle will turn up in the sample is 0.25.

Step by step solution

01

Given information

In a purchase case containing 12 bottles, randomly 3 bottles are selected.

02

Calculating the Probability 

Let X be the spoiled bottles in the sample.

Here, a case containing 1 spoiled bottle is taken.

By definitions, the probability that the spoiled bottle will turn up in the sample is given as

p=31121=35=0.25

Hence, the probability that the spoiled bottle will turn up in the sample is 0.25.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Buy-side vs. sell-side analysts’ earnings forecasts. Financial analysts who make forecasts of stock prices are categorized as either “buy-side” analysts or “sell-side” analysts. Refer to the Financial Analysts Journal (July/August 2008) comparison of earnings forecasts of buy-side and sell-side analysts, Exercise 2.86 (p. 112). The mean and standard deviation of forecast errors for both types of analysts are reproduced in the table. Assume that the distribution of forecast errors are approximately normally distributed.

a. Find the probability that a buy-side analyst has a forecast error of +2.00 or higher.

b. Find the probability that a sell-side analyst has a forecast error of +2.00 or higher


Buy-Side Analysts

Sell-Side Analysts

Mean

0.85

-0.05

Standard Deviation

1.93

0.85

Shopping vehicle and judgment. Refer to the Journal of Marketing Research (December 2011) study of whether you are more likely to choose a vice product (e.g., a candy bar) when your arm is flexed (as when carrying a shopping basket) than when your arm is extended (as when pushing a shopping cart), Exercise 2.85 (p. 112). The study measured choice scores (on a scale of 0 to 100, where higher scores indicate a greater preference for vice options) for consumers shopping under each of the two conditions. Recall that the average choice score for consumers with a flexed arm was 59, while the average for consumers with an extended arm was 43. For both conditions, assume that the standard deviation of the choice scores is 5. Also, assume that both distributions are approximately normally distributed.

a. In the flexed arm condition, what is the probability that a consumer has a choice score of 60 or greater?

b. In the extended arm condition, what is the probability that a consumer has a choice score of 60 or greater?

Hotels’ use of ecolabels. Refer to the Journal of Vacation Marketing (January 2016) study of travelers’ familiarity with ecolabels used by hotels, Exercise 2.64 (p. 104). Recall that adult travelers were shown a list of 6 different ecolabels, and asked, “Suppose the response is measured on a continuous scale from 10 (not familiar at all) to 50 (very familiar).” The mean and standard deviation for the Energy Star ecolabel are 44 and 1.5, respectively. Assume the distribution of the responses is approximately normally distributed.

a. Find the probability that a response to Energy Star exceeds 43.

b. Find the probability that a response to Energy Star falls between 42 and 45.

c. If you observe a response of 35 to an ecolabel, do you think it is likely that the ecolabel was Energy Star? Explain.

The random variable x has a normal distribution with μ=40and σ2=36. Find a value of x, call itx0, such that

a.P(xx0)=0.10

b.P(μxx0)=0.40

c.P(xx0)=0.05

d.P(xx0)=0.40

e.P(x0x<μ)=0.45

Waiting for a car wash. An automatic car wash takes exactly 5 minutes to wash a car. On average, 10 cars per hour arrive at the car wash. Suppose that 30 minutes before closing time, 5 cars are in line. If the car wash is in continuous use until closing time, will anyone likely be in line at closing time?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free