Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Flicker in an electrical power system. An assessment of the quality of the electrical power system in Turkey was the topic of an article published in Electrical Engineering (March 2013). One measure of quality is the degree to which voltage fluctuations cause light flicker in the system. The perception of light flicker (x) when the system is set at 380 kV was measured periodically (over 10-minute intervals). For transformers supplying heavy industry plants, the light flicker distribution was found to follow (approximately) a normal distribution, with m = 2.2% and s = .5%. If the perception of light flicker exceeds 3%, the transformer is shut down, and the system is reset. How likely can a transformer supplying a heavy industry plant be shut down due to light flicker?

Short Answer

Expert verified

The chance of electric flicker is 0.0548,which is high. Therefore, it is likely for a transformer supplying a heavy industry plant to be shut down due to light flicker.

Step by step solution

01

Given information

For transformers supplying heavy industry plants, the light flicker distribution has a normal distribution with a meanof 2.2% and a standard deviationof 0.5%.

02

 Computing the probability

Here, X~N2.2,0.5

Let,

PX>3=1-PX-2.20.5>3-2.20.5=Pz>1.6=1-Pz<1.6

Therefore, from the z-score table,

PX>3=1-0.9452=0.0548

Let 0.05 be the significance level. 0.0548 is greater than 0.05. The chance of electric flicker is 0.0548, which is high. Therefore, it is likely for a transformer supplying a heavy industry plant to be shut down due to light flicker.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Flaws in the plastic-coated wire. The British Columbia Institute of Technology provides on its Web site (www.math.bcit.ca) practical applications of statistics at mechanical engineering firms. The following is a Poisson application. A roll of plastic-coated wire has an average of .8 flaws per 4-meter length of wire. Suppose a quality-control engineer will sample a 4-meter length of wire from a roll of wire 220 meters in length. If no flaws are found in the sample, the engineer will accept the entire roll of wire. What is the probability that the roll will be rejected? What assumption did you make to find this probability?

Traffic fatalities and sporting events. The relationship betweenclose sporting events and game-day traffic fatalities was investigated in the Journal of Consumer Research (December 2011). The researchers found that closer football and basketball games are associated with more traffic fatalities. The methodology used by the researchers involvedmodeling the traffic fatality count for a particular game as a Poisson random variable. For games played at the winnerโ€™s location (home court or home field), the mean number of traffic fatalities was .5. Use this information to find the probability that at least three game-day traffic fatalities will occur at the winning teamโ€™s location.

Analysis of bottled water. Is the bottled water youโ€™re drinking really purified water? A study of bottled water brands conductedby the Natural Resources DefenseCouncil(NRDC) found that 25% of bottled water is just tap water packagedin a bottle (NRDC report updated, July 2013).Consider a sample of five bottled water brands and let equalthe number of these brands that use tap water.

a. Explain why x is (approximately) a binomial random variable.

b. Give the probability distribution for x as a formula.

c. Find P (x = 2)

d. Find P(xโ‰ค1).

e. In a random sample of 65 bottled water brands, is it likelythat 20 or more brands will contain tap water?Explain.

Mean shifts on a production line. Six Sigma is a comprehensive approach to quality goal setting that involves statistics. An article in Aircraft Engineering and Aerospace Technology (Vol. 76, No. 6, 2004) demonstrated the use of the normal distribution in Six Sigma goal setting at Motorola Corporation. Motorola discovered that the average defect rate for parts produced on an assembly line varies from run to run and is approximately normally distributed with a mean equal to 3 defects per million. Assume that the goal at Motorola is for the average defect rate to vary no more than 1.5 standard deviations above or below the mean of 3. How likely is it that the goal will be met?

Consider the probability distributions shown here:

  1. Use your intuition to find the mean for each distribution. How did you arrive at your choice?
  2. Which distribution appears to be more variable? Why?
  3. Calculateฮผโ€‰andโ€‰ฯƒ2 for each distribution. Compare these answers with your answers in parts a and b.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free