Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Detecting a computer virus attack. Chance (Winter 2004) presented basic methods for detecting virus attacks (e.g.,Trojan programs or worms) on a network computer that are sent from a remote host. These viruses reach the network through requests for communication (e.g., e-mail, Web chat, or remote log-in) that are identified as “packets.” For example, the “SYN flood” virus ties up the network computer by “flooding” the network with multiple packets. Cyber security experts can detect this type of virus attack if at least one packet is observed by a network sensor. Assume that the probability of observing a single packet sent from a new virus is only .001. If the virus actually sends 150 packets to a network computer, what is the probability that the virus is detected by the sensor?

Short Answer

Expert verified

Probability that the virus is detected by the sensor is 0.139.

Step by step solution

01

Given information.

The number of virus packets sent to network computer is n=150

The probability of observing a single packet sent from a new virus is p=0.001

Hence

q=1p=10.001=0.999

Let x be the packets observed by the network sensor.

02

Calculating the probability that the virus is detected by the sensor. 

The probability function of the binomial distribution is given by:

Ρ(x)=nx(p)x(q)nx

Hence the probability that the virus is detected by at least one packet is given as:

Ρ(x1)=1Ρ(x=0)=1100(0.001)0(0.999)1500=10.86064

Ρ(x1)=0.139

Hence probability that the virus is detected by the sensor is 0.139

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Traffic fatalities and sporting events. The relationship betweenclose sporting events and game-day traffic fatalities was investigated in the Journal of Consumer Research (December 2011). The researchers found that closer football and basketball games are associated with more traffic fatalities. The methodology used by the researchers involvedmodeling the traffic fatality count for a particular game as a Poisson random variable. For games played at the winner’s location (home court or home field), the mean number of traffic fatalities was .5. Use this information to find the probability that at least three game-day traffic fatalities will occur at the winning team’s location.

Checkout lanes at a supermarket. A team of consultants working for a large national supermarket chain based in the New York metropolitan area developed a statistical model for predicting the annual sales of potential new store locations. Part of their analysis involved identifying variables that influence store sales, such as the size of the store (in square feet), the size of the surrounding population, and the number of checkout lanes. They surveyed 52 supermarkets in a particular region of the country and constructed the relative frequency distribution shown below to describe the number of checkout lanes per store, x.

a. Why do the relative frequencies in the table represent the approximate probabilities of a randomly selected supermarket having x number of checkout lanes?

b. FindE(x) and interpret its value in the context of the problem.

c. Find the standard deviation of x.

d. According to Chebyshev’s Rule (Chapter 2, p. 106), what percentage of supermarkets would be expected to fall withinμ±σ? withinμ±2σ?

e. What is the actual number of supermarkets that fall within? ? Compare your answers with those of part d. Are the answers consistent?

Executive coaching and meeting effectiveness. Can executive coaching help improve business meeting effectiveness? This was the question of interest in an article published in Consulting Psychology Journal: Practice and

Research(Vol. 61, 2009). The goal of executive coaching is to reduce content behaviors (e.g., seeking information, disagreeing/ attacking) in favor of process behaviors (e.g., asking clarifying questions, summarizing). The study

reported that prior to receiving executive coaching, the percentage of observed content behaviors of leaders had a mean of 75% with a standard deviation of 8.5%. In contrast, after receiving executive coaching, the percentage of observed content behaviors of leaders had a mean of 52%

with a standard deviation of 7.5%. Assume that the percentage

of observed content behaviors is approximately normally distributed for both leaders with and without executive coaching. Suppose you observe 70% content behaviors by the leader of a business meeting. Give your opinion on whether or not the leader has received executive coaching.

Stock market. Give an example of a continuous random variable that would be of interest to a stockbroker.

Ages of “dot-com” employees. The age (in years) distribution for the employees of a highly successful “dot-com” company headquartered in Atlanta is shown in the next table. An employee is to be randomly selected from this population.

  1. Can the relative frequency distribution in the table be interpreted as a probability distribution? Explain.
  2. Graph the probability distribution.
  3. What is the probability that the randomly selected employee is over 30 years of age? Over 40 years of age? Under 30 years of age?
  4. What is the probability that the randomly selected employee will be 25 or 26 years old?
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free