Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Hospital patient interarrival times. The length of time between arrivals at a hospital clinic has an approximately exponential probability distribution. Suppose the mean time between arrivals for patients at a clinic is 4 minutes.

a. What is the probability that a particular interarrival time (the time between the arrival of two patients) is less than 1 minute?

b. What is the probability that the next four interarrival times are all less than 1 minute?

c. What is the probability that an interarrival time will exceed 10 minutes?

Short Answer

Expert verified

a. Probability that a particular interarrival time is less than 1 minute is 0.22.

b. probability that the next four interarrival times are all less than 1 minute is 0.0023.

c. probability that an interarrival time will exceed 10 minutes is 0.082.

Step by step solution

01

Given information:

The length of time between arrivals at a hospital clinic follows approximately exponential probability distribution.

Mean time between the arrivals for patients at a clinic is 4 minute.

02

Step 2:Calculation of the probability that a particular interarrival time is less than 1 minute

a.

Given mean time is 4 minute hence, the pdf can be given as

ft=14exp-t4t0

We have to find the probability that a particular interarrival time is less than 1 minute, that is to find PT<1

PT<1=01ftdt=0114exp-14tdt=-exp-14t01=-exp-14--exp0=-exp-14--1PT<1=1-exp-0.25=0.22

Hence Probability that a particular interarrival time is less than 1 minute is 0.22.

03

Calculation of the probability that the next four interarrival times are less than 1 minute.

b.

Exponential distribution has the memoryless property that is the next interarrival time re independent of each other.

Hence the required probability is

PT<1=0.22meantime=0.224=0.0023

Therefore probability that the next four interarrival times are all less than 1 minute is 0.0023

04

Step 4:Calculation of the probability that an interarrival time is exceed 10 minutes

c.

We have to calculate PT>10

PT>10=10ftdt=1014exp-14tdt=-exp-14t10

PT>10=exp-25=0.082

Therefore, probability that an interarrival time will exceed 10 minutes is 0.082.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

4.138 The random variable xcan be adequately approximated by an exponential probability distribution withθ=2 . Find the probability that xassumes a value

a. More than 3 standard deviations fromμ

b. Less than 2 standard deviations fromμ

c. Within half a standard deviation ofμ

Checkout lanes at a supermarket. A team of consultants working for a large national supermarket chain based in the New York metropolitan area developed a statistical model for predicting the annual sales of potential new store locations. Part of their analysis involved identifying variables that influence store sales, such as the size of the store (in square feet), the size of the surrounding population, and the number of checkout lanes. They surveyed 52 supermarkets in a particular region of the country and constructed the relative frequency distribution shown below to describe the number of checkout lanes per store, x.

a. Why do the relative frequencies in the table represent the approximate probabilities of a randomly selected supermarket having x number of checkout lanes?

b. FindE(x) and interpret its value in the context of the problem.

c. Find the standard deviation of x.

d. According to Chebyshev’s Rule (Chapter 2, p. 106), what percentage of supermarkets would be expected to fall withinμ±σ? withinμ±2σ?

e. What is the actual number of supermarkets that fall within? ? Compare your answers with those of part d. Are the answers consistent?

LASIK surgery complications. According to studies, 1% of all patients who undergo laser surgery (i.e., LASIK) to correct their vision have serious post laser vision problems (All About Vision, 2012). In a sample of 100,000 patients, what is the approximate probability that fewer than 950 will experience serious post laser vision problems?

Shear strength of rock fractures. Understanding the characteristics

of rock masses, especially the nature of the fracturesis essential when building dams and power plants.The shear strength of rock fractures was investigated inEngineering Geology(May 12, 2010). The Joint RoughnessCoefficient (JRC) was used to measure shear strength.Civil engineers collected JRC data for over 750 rock fractures.The results (simulated from information provided in the article) are summarized in the accompanying SPSShistogram. Should the engineers use the normal probabilitydistribution to model the behavior of shear strength forrock fractures? Explain

Executive coaching and meeting effectiveness. Can executive coaching help improve business meeting effectiveness? This was the question of interest in an article published in Consulting Psychology Journal: Practice and

Research(Vol. 61, 2009). The goal of executive coaching is to reduce content behaviors (e.g., seeking information, disagreeing/ attacking) in favor of process behaviors (e.g., asking clarifying questions, summarizing). The study

reported that prior to receiving executive coaching, the percentage of observed content behaviors of leaders had a mean of 75% with a standard deviation of 8.5%. In contrast, after receiving executive coaching, the percentage of observed content behaviors of leaders had a mean of 52%

with a standard deviation of 7.5%. Assume that the percentage

of observed content behaviors is approximately normally distributed for both leaders with and without executive coaching. Suppose you observe 70% content behaviors by the leader of a business meeting. Give your opinion on whether or not the leader has received executive coaching.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free