Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

LASIK surgery complications. According to studies, 1% of all patients who undergo laser surgery (i.e., LASIK) to correct their vision have serious post laser vision problems (All About Vision, 2012). In a sample of 100,000 patients, what is the approximate probability that fewer than 950 will experience serious post laser vision problems?

Short Answer

Expert verified

Approximate probability that fewer patients will experience serious post laser vision problem is 0.0537

Step by step solution

01

Given information

1% of the patients who undergo laser surgery to correct the vision have serious postlaser vision problem.

02

Calculating the value of mean

Let x be the number of patients undergo the laser surgery to correct the vision who have the serious post laser problem.

With n =100,000 and p =0.001

Hence,

Ex=μ=np=100,000×0.01Ex=1000

Hence mean is 1000.

03

Calculating the value of standard deviation

α=npq=100,000×0.01-0.01)=1000,000×0.01×0.99σ=31.646

Hence the value of standard deviation is 31.646

04

Checking whether normal distribution is approximate or not.

Most of the observations will fall within three standard deviation of the mean.

That is, atleast 89of the measurement will fall within 3 standard deviation of the mean.

Lets μ=1000and μ=31.464

The observations will fall within three standard deviation of the mean is,

μ±3σ=1000±331.464

=1000-331.464,1000+331.464=1000-94.392,1000+331.464

μ±3σ=905,608,1,094.392

Hence, the normal approximation is appropriate because the interval905,608,1,094.392 is lies in the range of 0 to 1000,000

05

Calculating the value of  P(x<950)

The approximate probability can be obtained by using the formula

z=k-0.5-μσ

Therefore,

Px<950=Pz<950-0.5-μσ=Pz<949.5-100031.464Px<950=Pz<949.5-100031.464=Pz<-50.531.464

Pz-1.61[from table 2-normal curve areas]

=0.5-0.4463=0.0537

Hence, approximate probability that fewer than 950 patients will experience serious post laser vision problem is 0.0537

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The Apprenticecontestants’ performance ratings. Referto the Significance(April 2015) study of contestants’ performanceson the United Kingdom’s version of the TVshow, The Apprentice, Exercise 2.9 (p. 73). Recall thatthe performance of each of 159 contestants was rated ona 20-point scale. Contestants were also divided into twogroups: those who played for a job and those who playedfor a businesspartnership. These data (simulated, based onstatistics reportedin the article) are saved in the accompanyingfile. Descriptive statistics for each of the two groupsof contestants are displayed in the accompanying Minitabprintout.

a. Determine whether the performance ratings of contestantswho played for a job are approximately normallydistributed.

b. Determine whether the performance ratings of contestantswho played for a business partnership are approximatelynormally distributed.

Descriptive Statistics: Rating

Variable Rating

Price

N

Mean

St.Dev

Minimum

Q

1

median

Q3

Maximum

IQ

R

Job

99

7.879

4.224

1

4

9

11

20

7

Partner

60

8.883

4.809

1

5

8

12

20

7

Industrial filling process. The characteristics of an industrialfilling process in which an expensive liquid is injectedinto a container were investigated in the Journal of QualityTechnology(July 1999). The quantity injected per containeris approximately normally distributed with mean 10

units and standard deviation .2 units. Each unit of fill costs\(20 per unit. If a container contains less than 10 units (i.e.,is underfilled), it must be reprocessed at a cost of \)10. A properly filled container sells for $230.

a. Find the probability that a container is underfilled. Notunderfilled.

b. A container is initially underfilled and must be reprocessed.Upon refilling, it contains 10.60 units. Howmuch profit will the company make on thiscontainer?

c. The operations manager adjusts the mean of the fillingprocess upward to 10.60 units in order to makethe probability of underfilling approximately zero.

Under these conditions, what is the expected profit percontainer?

Shopping vehicle and judgment. Refer to the Journal of Marketing Research (December 2011) study of whether you are more likely to choose a vice product (e.g., a candy bar) when your arm is flexed (as when carrying a shopping basket) than when your arm is extended (as when pushing a shopping cart), Exercise 2.85 (p. 112). The study measured choice scores (on a scale of 0 to 100, where higher scores indicate a greater preference for vice options) for consumers shopping under each of the two conditions. Recall that the average choice score for consumers with a flexed arm was 59, while the average for consumers with an extended arm was 43. For both conditions, assume that the standard deviation of the choice scores is 5. Also, assume that both distributions are approximately normally distributed.

a. In the flexed arm condition, what is the probability that a consumer has a choice score of 60 or greater?

b. In the extended arm condition, what is the probability that a consumer has a choice score of 60 or greater?

Lead in metal shredder residue. On the basis of data collectedfrom metal shredders across the nation, the amount xof extractable lead in metal shredder residue has an approximateexponential distribution with meanθ= 2.5 milligramsper liter (Florida Shredder’s Association).

a. Find the probability that xis greater than 2 milligramsper liter.

b. Find the probability that xis less than 5 milligrams perliter.

Soft-drink dispenser. The manager of a local soft-drink bottling company believes that when a new beverage dispensing machine is set to dispense 7 ounces, it in fact dispenses an amount at random anywhere between 6.5and 7.5 ounces inclusive. Suppose has a uniform probability

distribution.

a.Is the amount dispensed by the beverage machine a discreteor a continuous random variable? Explain.

b. Graph the frequency function forX , the amount of beverage the manager believes is dispensed by the new machine when it is set to dispense 7 ounces.

c. Find the mean and standard deviation for the distribution graphed in part b, and locate the mean and theinterval μ±2σon the graph.

d. Find P(x7).

e. FindP(x<6) .

f. FindP(6.5x7.25) .

g. What is the probability that each of the next six bottles filled by the new machine will contain more than7.25 ounces of beverage? Assume that the amount of beverage dispensed in one bottle is independent of the amount dispensed in another bottle.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free