Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Analysis of bottled water. Is the bottled water you’re drinking really purified water? A study of bottled water brands conductedby the Natural Resources DefenseCouncil(NRDC) found that 25% of bottled water is just tap water packagedin a bottle (NRDC report updated, July 2013).Consider a sample of five bottled water brands and let equalthe number of these brands that use tap water.

a. Explain why x is (approximately) a binomial random variable.

b. Give the probability distribution for x as a formula.

c. Find P (x = 2)

d. Find P(x1).

e. In a random sample of 65 bottled water brands, is it likelythat 20 or more brands will contain tap water?Explain.

Short Answer

Expert verified
  1. X is approximately a binomial random variable.
  2. Probability distribution for x as a formula isP(X)=nxpxqn-x
  3. The value of P ( x = 2) is 0.2750
  4. The value ofP(x1)is 0.6328
  5. In a random sample of 65 bottled water brands, is it likely that 20 or more brands will contain tap water the probability being 0.1414

Step by step solution

01

Given information

From the study of bottled water brands it is found that 25% of bottled water is just tap water packed in a bottle.

X be thenumber of these brands that use tap water.

02

Verifying x is approximately a binomial random variable

a.

Let x be the number of bottled water brands that use tap water

Here, n = 5

Andp= 0.25

Hence, we can say that x follows a binomial distribution with the parameters n = 5 and p = 0.25

03

 Computing the probability distribution for X

b.

Probability distribution for X is given by:

P(X|x)=nxpxqn-x

Where and x=0,1,2...

X follows a binomial distribution with parameters npq

04

 Computing the probability P( x = 2)

c.

Given n=5,p=0.25, x=2

Therefore,

P(x=2)=520.252(1-0.25)3=10×0.062×0.421=0.2750

05

 Computing the probability P(x≤1)

d.

Given n=5,p=0.25, x=2

P(x2)=x=015x(0.25)2(1-0.25)3=0.63281

06

:Computing the probability P ( x>20 )

e.

Here n=65, p=0.25

Mean is given by npthat is:

n×p=65×0.25=16.25

Standard deviation is given bynpqthat is:

SD=n×p×(1-p)=65×0.25×0.75=3.491P(x>20)=P7>x-meanvariance=P7>20-16.253.491=P(7.1.074)P(x>20)=1-P(7<1.074)=0.1414

Hence in a random sample of 65 bottled water brands, is it likely that 20 or more brands will contain tap water and the probability will be 0.1414.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Stock market participation and IQ. Refer to The Journal of Finance (December 2011) study of whether the decision to invest in the stock market is dependent on IQ, Exercise 3.46 (p. 182). Recall that an IQ score (from a low score of 1 to a high score of 9) was determined for each in a sample of 158,044 Finnish citizens. Also recorded was whether or not the citizen invested in the stock market. The accompanying table gives the number of Finnish citizens in each IQ score/investment category. Which group of Finnish citizens (market investors or noninvestors) has the highest average IQ score?

IQ Score

Invest in market

No investment

Totals

1

893

4659

5552

2

1340

9409

10749

3

2009

9993

12002

4

5358

19682

25040

5

8484

24640

33124

6

10270

21673

31943

7

6698

11260

17958

8

5135

7010

12145

9

4464

5067

9531

Totals

44651

113393

158044

Mailrooms contaminated with anthrax. During autumn 2001, there was a highly publicized outbreak of anthrax cases among U.S. Postal Service workers. In Chance (Spring 2002), research statisticians discussed the problem of sampling mailrooms for the presence of anthrax spores. Let x equal the number of mailrooms contaminated with anthrax spores in a random sample of n mailrooms selected from a population of N mailrooms. The researchers showed that the probability distribution for x is given by the formula P(x)=(kx)(N-kn-x)(Nn)

where k is the number of contaminated mailrooms in the population. (In Section 4.4 we identify this probability distribution as the hypergeometric distribution.) Suppose N = 100, n = 3, and k = 20.

a. Find p(0).

b. Find p(1)

. c. Find p(2).

d. Find p(3)

Executive coaching and meeting effectiveness. Can executive coaching help improve business meeting effectiveness? This was the question of interest in an article published in Consulting Psychology Journal: Practice and

Research(Vol. 61, 2009). The goal of executive coaching is to reduce content behaviors (e.g., seeking information, disagreeing/ attacking) in favor of process behaviors (e.g., asking clarifying questions, summarizing). The study

reported that prior to receiving executive coaching, the percentage of observed content behaviors of leaders had a mean of 75% with a standard deviation of 8.5%. In contrast, after receiving executive coaching, the percentage of observed content behaviors of leaders had a mean of 52%

with a standard deviation of 7.5%. Assume that the percentage

of observed content behaviors is approximately normally distributed for both leaders with and without executive coaching. Suppose you observe 70% content behaviors by the leader of a business meeting. Give your opinion on whether or not the leader has received executive coaching.

Public transit deaths. Millions of suburban commuters use the public transit system (e.g., subway trains) as an alter native to the automobile. While generally perceived as a safe mode of transportation, the average number of deaths per week due to public transit accidents is 5 (Bureau of Transportation Statistics, 2015).

a. Construct arguments both for and against the use of the Poisson distribution to characterize the number of deaths per week due to public transit accidents.

b. For the remainder of this exercise, assume the Poisson distribution is an adequate approximation for x, the number of deaths per week due to public transit accidents. Find E(x)and the standard deviation of x.

c. Based strictly on your answers to part b, is it likely that more than 12 deaths occur next week? Explain.

d. Findp(x>12). Is this probability consistent with your answer to part c? Explain.

The random variable x has a normal distribution with μ=1000 and σ=10.

a. Find the probability that x assumes a value more than 2 standard deviations from its mean. More than 3 standard deviations from .μ

b. Find the probability that x assumes a value within 1 standard deviation of its mean. Within 2 standard deviations of μ.

c. Find the value of x that represents the 80th percentile of this distribution. The 10th percentile.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free