Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Identify the type of continuous random variable—uniform,normal, or exponential—described by each of the following probability density functions:

a.f(x)=e-x77;x>o

b.f(x)=120;5<x<25

c.f(x)=e-.5[x-10/5]252π

Short Answer

Expert verified
  1. X is an exponential random variable.
  2. X is a uniform random variable.
  3. X is a normal random variable.

Step by step solution

01

Given information

X is arandom variable.

02

Identifying the random variable when f(x)=e-x77;x>o

a.

f(x)=e-x77;x>o=1θe-xθ

Where,θ=7 andx>0

The p.d.f of an exponential distribution isf(x)==1θe-xθ;x>o

Hence, X is an exponential random variable.

03

Identifying the random variable when f(x)=120;5<x<25

b.

f(x)=120;5<x<25=125-5=1d-c

Where, d= 25 and c = 5

The p.d.f of uniform distribution isf(x)=1d-c;cxd

Hence, X is a uniform random variable.

04

Identifying the random variable when f(x)=e-.5[(x-10)/5]252π

c.

f(x)=e-.5[(x-10)/5]252π=1σ2πe-12[x-μ/σ]2

Where ,μ=10 andσ=5

The p.d.f of uniform distribution isf(x)=1σ2πe-12[(x-μ)/σ]2

Hence, X is a normal random variable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose the random variable x is best described by a normal distribution with μ=30 and σ=4. Find the z-score that corresponds to each of the following x values:

a.x=20b.x=30c.x=2.75d.x=15e.x=35f.x=25

Buy-side vs. sell-side analysts’ earnings forecasts. Financial analysts who make forecasts of stock prices are categorized as either “buy-side” analysts or “sell-side” analysts. Refer to the Financial Analysts Journal (July/August 2008) comparison of earnings forecasts of buy-side and sell-side analysts, Exercise 2.86 (p. 112). The mean and standard deviation of forecast errors for both types of analysts are reproduced in the table. Assume that the distribution of forecast errors are approximately normally distributed.

a. Find the probability that a buy-side analyst has a forecast error of +2.00 or higher.

b. Find the probability that a sell-side analyst has a forecast error of +2.00 or higher


Buy-Side Analysts

Sell-Side Analysts

Mean

0.85

-0.05

Standard Deviation

1.93

0.85

Ages of “dot-com” employees. The age (in years) distribution for the employees of a highly successful “dot-com” company headquartered in Atlanta is shown in the next table. An employee is to be randomly selected from this population.

  1. Can the relative frequency distribution in the table be interpreted as a probability distribution? Explain.
  2. Graph the probability distribution.
  3. What is the probability that the randomly selected employee is over 30 years of age? Over 40 years of age? Under 30 years of age?
  4. What is the probability that the randomly selected employee will be 25 or 26 years old?

When to replace a maintenance system. An article in the Journal of Quality of Maintenance Engineering (Vol. 19,2013) studied the problem of finding the optimal replacement policy for a maintenance system. Consider a system that is tested every 12 hours. The test will determine whether there are any flaws in the system. Assume that the probability of no flaw being detected is .85. If a flaw (failure) is detected, the system is repaired. Following the fifth failed test, the system is completely replaced. Now, let x represent the number of tests until the system needs to be replaced.

a. Give the probability distribution for x as a formula.

b. Find the probability that the system needs to be replaced after 8 total tests.

Detecting a computer virus attack. Chance (Winter 2004) presented basic methods for detecting virus attacks (e.g.,Trojan programs or worms) on a network computer that are sent from a remote host. These viruses reach the network through requests for communication (e.g., e-mail, Web chat, or remote log-in) that are identified as “packets.” For example, the “SYN flood” virus ties up the network computer by “flooding” the network with multiple packets. Cyber security experts can detect this type of virus attack if at least one packet is observed by a network sensor. Assume that the probability of observing a single packet sent from a new virus is only .001. If the virus actually sends 150 packets to a network computer, what is the probability that the virus is detected by the sensor?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free