Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Given that xis a poisson random variable, computep(x)for each of the following cases:

a.λ=2,x=3

b.λ=1,x=4

c.λ=0.5,x=2

Short Answer

Expert verified

a. The probability distributionpx is 43e-2.

b. The probability distributionpx is 124e-1.

c. The probability distributionpx is 0.125×e-0.5.

Step by step solution

01

Given information

X is a Poisson random variable.

02

Compute the probability distribution p(x) when λ=2,x=3

a.

For a Poisson random variable, the probability distribution

px=λxe-λx!:x=0,1,2,...

Here,λ=2,x=3

px=λxe-λx!=23e-23!=8×e-26=43e-2

Hence, the probability distributionpx is 43e-2.

03

Compute the probability distribution p(x) when λ=1,x=4

b.

Here,λ=1,x=4

px=λxe-λx!=14e-14!=124e-1

Hence, the probability distributionpxis 124e-1.

04

Compute the probability distribution p(x) when λ=0.5,x=2

c.

Here,λ=0.5,x=2

px=λxe-λx!=0.52e-0.52!=0.125×e-0.5

Hence, the probability distributionpx is 0.125×e-0.5.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Preventative maintenance tests. The optimal schedulingofpreventative maintenance tests of some (but not all) ofnindependently operating components was developed in Reliability Engineering and System Safety(January2006).The time (in hours) between failures of a component wasapproximated by an exponential distribution with meanθ.

a. Supposeθ=1000 hours. Find the probability that the time between component failures ranges between 1200and1500hours.

b. Again, assumeθ=1000hours. Find the probability that the time between component failures is at least1200hours.

c. Given that the time between failures is at leastrole="math" localid="1658214710824" 1200 hours, what is the probability that the time between failures is less than1500hours?

If x is a binomial random variable, compute for each of the following cases:

  1. n = 4, x = 2, p = .2
  2. n = 3, x = 0, p = .7
  3. n = 5, x = 3, p = .1
  4. n = 3, x = 1, p = .9
  5. n = 3, x = 1, p = .3
  6. n = 4, x = 2, p = .6

Lead in metal shredder residue. On the basis of data collectedfrom metal shredders across the nation, the amount xof extractable lead in metal shredder residue has an approximateexponential distribution with meanθ= 2.5 milligramsper liter (Florida Shredder’s Association).

a. Find the probability that xis greater than 2 milligramsper liter.

b. Find the probability that xis less than 5 milligrams perliter.

4.112 California’s electoral college votes. During a presidential election, each state is allotted a different number of votes in the Electoral College, depending on the population. For example, California is allotted 55 votes (the most) while several states (including the District of Columbia) are allotted 3 votes each (the least). When a presidential candidate wins the popular vote in a state, the candidate wins all the Electoral College votes in that state. To become president, a candidate must win 270 of the total of 538 votes in the Electoral College. Chance(Winter 2010) demonstrated the impact on the presidential election of winning California. Assuming a candidate wins California’s 55 votes, the number of additional Electoral College votes the candidate will win can be approximated by a normal distribution with μ=241.5votes and σ=49.8votes. If a presidential candidate wins the popular vote in California, what are the chances that he or she becomes the next U.S. president?

Stock market participation and IQ. Refer to The Journal of Finance (December 2011) study of whether the decision to invest in the stock market is dependent on IQ, Exercise 3.46 (p. 182). Recall that an IQ score (from a low score of 1 to a high score of 9) was determined for each in a sample of 158,044 Finnish citizens. Also recorded was whether or not the citizen invested in the stock market. The accompanying table gives the number of Finnish citizens in each IQ score/investment category. Which group of Finnish citizens (market investors or noninvestors) has the highest average IQ score?

IQ Score

Invest in market

No investment

Totals

1

893

4659

5552

2

1340

9409

10749

3

2009

9993

12002

4

5358

19682

25040

5

8484

24640

33124

6

10270

21673

31943

7

6698

11260

17958

8

5135

7010

12145

9

4464

5067

9531

Totals

44651

113393

158044

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free