Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Critical-part failures in NASCAR vehicles. In NASCAR races such as the Daytona 500, 43 drivers start the race; however, about 10% of the cars do not finish due to the failure of critical parts. University of Portland professors conducted a study of critical-part failures from 36 NASCAR races (The Sport Journal, Winter 2007). The researchers discovered that the time (in hours) until the first critical-part failure is exponentially distributed with a mean of .10 hours.

a. Find the probability that the time until the first critical part failure is 1 hour or more.

b. Find the probability that the time until the first critical part failure is less than 30 minutes.

Short Answer

Expert verified

a. The probability that the time until the first critical part failure is more than an hour is 0.000045.

b. The probability that the time until the first critical part failure is less than 30 minutes is 0.9933

Step by step solution

01

Given Information

The time until the first critical part failure is exponentially distributed with a mean of 0.1hour

Let x be the time until the first critical part failure.

The p.d.f of the exponential distribution is given by

fx=1θe-1θx;x>0

02

(a) Compute the probabilities for given conditions

The probability that the time until the first critical part failure is more than an hour is computed as

px>1=101e-10xdx=10×e-10x-101=-e-10+e-10=0.000045

Thus, the probability is 0.000045

03

(b) Compute the probability

The probability that the time until the first critical part failure is less than 30 minutes is computed as

Therefore,

px<12=10012e-10xdx=10×e-10x-10012=-e-5+e-0=1-0.0067=0.9933

Thus, the probability is 0.9933.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Errors in measuring truck weights. To help highway planners anticipate the need for road repairs and design futureconstruction projects, data are collected on the estimatedvolume and weight of truck traffic on specific roadways (Transportation Planning Handbook, 2016) using specialized “weigh-in-motion” equipment. In an experiment involving repeated weighing of a 27,907-pound truck, it wasfound that the weights recorded by the weigh-in-motionequipment were approximately normally distributed witha mean of 27,315 and a standard deviation of 628 pounds

(Minnesota Department of Transportation). It follows thatthe difference between the actual weight and recordedweight, the error of measurement, is normally distributedwith a mean of 592 pounds and a standard deviation of 628pounds.

a. What is the probability that the weigh-in-motion equipment understates the actual weight of the truck?

b. If a 27,907-pound truck was driven over the weigh-in-motion equipment 100 times, approximately howmany times would the equipment overstate the truck’sweight?

c. What is the probability that the error in the weightrecorded by the weigh-in-motion equipment for a27,907-pound truck exceeds 400 pounds?

d. It is possible to adjust (or calibrate) the weigh-in-motion equipment to control the mean error of measurement. At what level should the mean error beset so the equipment will understate the weight of a27,907-pound truck 50% of the time? Only 40% of thetime

Working on summer vacation. Recall (Exercise 3.13, p. 169) that a Harris Interactive (July 2013) poll found that 22% of U.S. adults do not work at all while on summer vacation. In a random sample of 10 U.S. adults, let x represent the number who do not work during summer vacation.

a. For this experiment, define the event that represents a “success.”

b. Explain why x is (approximately) a binomial random variable.

c. Give the value of p for this binomial experiment.

d. Find P(x=3)

e. Find the probability that 2 or fewer of the 10 U.S. adults do not work during summer vacation.

Suppose xis a binomial random variable with n= 20 and

p= .7.

a. FindP(x=14).

b. FindP(x12).

c. FindP(x>12).

d. FindP(9x18).

e. FindP(8<x<18).

f. Findμ,σ2, andσ.

g. What is the probability that xis in the intervalμ±2σ?

Hospital patient interarrival times. The length of time between arrivals at a hospital clinic has an approximately exponential probability distribution. Suppose the mean time between arrivals for patients at a clinic is 4 minutes.

a. What is the probability that a particular interarrival time (the time between the arrival of two patients) is less than 1 minute?

b. What is the probability that the next four interarrival times are all less than 1 minute?

c. What is the probability that an interarrival time will exceed 10 minutes?

Suppose the random variable x is best described by a normal distribution with μ=30 and σ=4. Find the z-score that corresponds to each of the following x values:

a.x=20b.x=30c.x=2.75d.x=15e.x=35f.x=25

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free