Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Maintaining pipe wall temperature. Maintaining a constant pipe wall temperature in some hot-process applications is critical. A technique that utilizes bolt-on trace elements to maintain temperature was presented in the Journal of Heat Transfer (November 2000). Without bolt-on trace elements, the pipe wall temperature of a switch condenser used to produce plastic has a uniform distribution ranging from 260° to 290°F. When several bolt-on trace elements are attached to the piping, the wall temperature is uniform from 278° to 285°F.

a. Ideally, the pipe wall temperature should range between 280° and 284°F. What is the probability that the temperature will fall in this ideal range when no bolt-on trace elements are used? When bolt-on trace elements are attached to the pipe?

b. When the temperature is 268°F or lower, the hot liquid plastic hardens (or plates), causing a buildup in the piping. What is the probability of plastic plating when no bolt-on trace elements are used? When bolt-on trace elements are attachedto the pipe?

Short Answer

Expert verified

a. The probability that the temperature will fall is 0.133 when no bolt-on trace elements are used.

The probability that the temperature will fall is 0.571 when bolt-on trace elements are used.

b. The probability of plastic plating is 0.267 when no bolt-on trace elements are used.

The probability of plastic plating is 0 when bolt-on trace elements are used.

Step by step solution

01

Given Information

When without bolt on-trace elements, the pipe wall temperature is uniform from 260°Fto290°F

Let x be a random variable that follows uniform distribution.

The p.d.f is given below

fx=1290-260;260x290=130;260x290

When several bolt-on trace element are attached to the piping, the wall temperature has a uniform distribution ranging from 278°Fto285°F.

The p.d.f is given by

fx=1285-278;278x285=17;278x285

02

(a) Identify the probability for given conditions

When, no bolt-on trace elements are used.

The probability that the temperature will fall in range between

p280<x<284=280284130dx=130x280284=130284-280=0.133

Hence, the probability is 0.133.

When, bolt-on trace elements are used

The probability that the temperature will fall in range between 280°Fand284°F

p280<x<284=28028417dx=17x280284=17284-280=0.571

Thus, the probability is0.571.

03

(b) Compute the probability

When, no bolt-on trace elements are used.

The probability of plastic plating is

px268=260268130dx=130x260268=130268-260=0.267

Therefore, the probability is 0.267.

When, the bolt-on trace elements are used.

The probability of plastic plating is zeroas the value of x is not in between the range when the temperature is lower or268°F.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If x is a binomial random variable, compute for each of the following cases:

  1. n = 4, x = 2, p = .2
  2. n = 3, x = 0, p = .7
  3. n = 5, x = 3, p = .1
  4. n = 3, x = 1, p = .9
  5. n = 3, x = 1, p = .3
  6. n = 4, x = 2, p = .6

If x is a binomial random variable, use Table I in Appendix D to find the following probabilities:

a.for n = 10, p = .4

b.for n = 15, p = .6

c.for n = 5, p = .1

d.for n = 25, p = .7

e.for n = 15, p = .9

f.for n = 20, p = .2

Shopping vehicle and judgment. Refer to the Journal of Marketing Research (December 2011) study of whether you are more likely to choose a vice product (e.g., a candy bar) when your arm is flexed (as when carrying a shopping basket) than when your arm is extended (as when pushing a shopping cart), Exercise 2.85 (p. 112). The study measured choice scores (on a scale of 0 to 100, where higher scores indicate a greater preference for vice options) for consumers shopping under each of the two conditions. Recall that the average choice score for consumers with a flexed arm was 59, while the average for consumers with an extended arm was 43. For both conditions, assume that the standard deviation of the choice scores is 5. Also, assume that both distributions are approximately normally distributed.

a. In the flexed arm condition, what is the probability that a consumer has a choice score of 60 or greater?

b. In the extended arm condition, what is the probability that a consumer has a choice score of 60 or greater?

Consider the probability distribution shown here

  1. Calculate μ,σ2andσ.
  2. Graph p(x). Locateμ,μ2σandμ+2σ on the graph.
  3. What is the probability that x is in the interval μ+2σ ?

Variable life insurance return rates. With a variable life insurance policy, the rate of return on the investment (i.e., the death benefit) varies from year to year. A study of these variable return rates was published in International Journal of Statistical Distributions (Vol. 1, 2015). A transformedratio of the return rates (x) for two consecutive years was shown to have a normal distribution, with μ=1.5 and role="math" localid="1660283206727" σ=0.2. Use the standard normal table or statistical software to find the following probabilities.

a.P(1.3<x<1.6)

b. P(x>1.4)

c. P(x<1.5)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free