Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Preventative maintenance tests. The optimal schedulingofpreventative maintenance tests of some (but not all) ofnindependently operating components was developed in Reliability Engineering and System Safety(January2006).The time (in hours) between failures of a component wasapproximated by an exponential distribution with meanθ.

a. Supposeθ=1000 hours. Find the probability that the time between component failures ranges between 1200and1500hours.

b. Again, assumeθ=1000hours. Find the probability that the time between component failures is at least1200hours.

c. Given that the time between failures is at leastrole="math" localid="1658214710824" 1200 hours, what is the probability that the time between failures is less than1500hours?

Short Answer

Expert verified

a. The probability that the time between component failure ranges between 1200 and 1500 is 0.078.

b. The probability that the time between component failures is atleast 1200 hours is 0.301.

c. The probability that the time between component failures is less than 1500 hours is 0.259.

Step by step solution

01

Given information

The time between failures of a component was approximated by an exponential distribution with mean θ.

02

Define the probability density function

Let, Xdenote the time between failures of a component.

Therefore, X follows an exponential distribution with meanθ

The p.d.f of Xis

f(x)=1θexθ;x0

03

Computing the required probability

a.

The probability that the time between component failure ranges between 1200 and 1500 isP(1200X1500).

P(1200X1500)=12001500f(x)dx=1200150011000ex1000dx=1100012001500ex1000dx=11000(1000e651000e32)=e65e320.078

Hence, the probability that the time between component failure ranges between 1200 and 1500 is 0.078.

04

Computing the required probability

b.

The probability thatthe time between component failures is at least 1200 hours is P(X1200).

Hence, the probability that the time between component failures is at least 1200 hours is 0.301.

05

Compute the probability

c.

If the time between component failures is at least 1200 hours, then the probability that the time between component failures is less than 1500 hours is .

P(X<1500|X1200)=P(1200X<1500)P(X1200)=12001500f(x)dx1200f(x)dx=120015001100ex1000dx12001100ex1000dx=1000[ex1000]120015001000[ex1000]1200=e15001000e12001000e1000e12001000=e1.5e1.2e1.2=e1.5e1.2+e1.2e1.2=1e1.5+1.2=1e0.3=10.7408=0.2592

P(X<1500|X1200)=0.259

Hence, the probability that the time between component failures is less than 1500 hours is 0.259.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Industrial filling process. The characteristics of an industrialfilling process in which an expensive liquid is injectedinto a container were investigated in the Journal of QualityTechnology(July 1999). The quantity injected per containeris approximately normally distributed with mean 10

units and standard deviation .2 units. Each unit of fill costs\(20 per unit. If a container contains less than 10 units (i.e.,is underfilled), it must be reprocessed at a cost of \)10. A properly filled container sells for $230.

a. Find the probability that a container is underfilled. Notunderfilled.

b. A container is initially underfilled and must be reprocessed.Upon refilling, it contains 10.60 units. Howmuch profit will the company make on thiscontainer?

c. The operations manager adjusts the mean of the fillingprocess upward to 10.60 units in order to makethe probability of underfilling approximately zero.

Under these conditions, what is the expected profit percontainer?

On-site treatment of hazardous waste. The Resource Conservation and Recovery Act mandates the tracking and disposal of hazardous waste produced at U.S. facilities. Professional Geographer (February 2000) reported the hazardous-waste generation and disposal characteristics of 209 facilities. Only 8 of these facilities treated hazardous waste on-site. Use the hypergeometric distribution to answer the following:

a. In a random sample of 10 of the 209 facilities, what is the expected number in the sample that treat hazardous waste on-site? Interpret this result.

b. Find the probability that 4 of the 10 selected facilities treat hazardous waste on-site.

Shopping vehicle and judgment. Refer to the Journal of Marketing Research (December 2011) study of whether you are more likely to choose a vice product (e.g., a candy bar) when your arm is flexed (as when carrying a shopping basket) than when your arm is extended (as when pushing a shopping cart), Exercise 2.85 (p. 112). The study measured choice scores (on a scale of 0 to 100, where higher scores indicate a greater preference for vice options) for consumers shopping under each of the two conditions. Recall that the average choice score for consumers with a flexed arm was 59, while the average for consumers with an extended arm was 43. For both conditions, assume that the standard deviation of the choice scores is 5. Also, assume that both distributions are approximately normally distributed.

a. In the flexed arm condition, what is the probability that a consumer has a choice score of 60 or greater?

b. In the extended arm condition, what is the probability that a consumer has a choice score of 60 or greater?

Do social robots walk or roll? Refer to the International Conference on Social Robotics (Vol. 6414, 2010) study of the trend in the design of social robots, Exercise 2.3 (p. 72). Recall that in a random sample of 106 social (or service) robots designed to entertain, educate, and care for human users, 63 were built with legs only, 20 with wheels only, 8 with both legs and wheels, and 15 with neither legs nor wheels. Assume the following: Of the 63 robots with legs only, 50 have two legs, 5 have three legs, and 8 have four legs; of the 8 robots with both legs and wheels, all 8 have two legs. Suppose one of the 106 social robots is randomly selected. Let x equal the number of legs on the robot.

  1. List the possible values of x.
  2. Find the probability distribution of x.
  3. Find E(x)and give a practical interpretation of its value.

Contaminated gun cartridges. A weapons manufacturer uses liquid fuel to produce gun cartridges. The fuel can get mixed with another liquid to produce a contaminated cartridge during the manufacturing process. A University of South Florida statistician hired by the company to investigate the level of contamination in the stored cartridges found that 23% of the cartridges in a particular lot were contaminated. Suppose you randomly sample (without replacement) gun cartridges from this lot until you find a contaminated one. Let x be the number of cartridges sampled until a contaminated one is found. It is known that the formula gives the probability distribution for x

p(x)=(.23)(.77)x-1,x=1,2,3

  1. Find p(1). Interpret this result.
  2. Find p(5). Interpret this result.
  3. Find p(x2). Interpret this result.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free