Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

4.133 Suppose xis a random variable best described by a uniform

probability distribution with c= 20 and d= 45.

a. Find f(x)

b. Find the mean and standard deviation of x.

c. Graph f (x) and locate μand the interval μ±2σonthe graph. Note that the probability that xassumes avalue within the interval μ±2σis equal to 1.

Short Answer

Expert verified

a. The probability density function is

f(x)=0.0420x450;otherwise

b. The mean is 32.5 and the standard deviation is 7.2169

c. The lower limit is 18.0662 and the upper limit is 46.9338

Step by step solution

01

Given Information

Here x is a uniform random variable with parameters c=20 and d=45.

02

Finding the f (x)

a.

The probability density function random variable x is given by

f(x)=1d-c;c<x<d

Here, c=20 and d=45

So the pdf of x is:

f(x)=145-20=125=0.04

Thus, f (x0 = 0.04 ; 20 < x <78C8 45

03

Finding the mean and standard deviation of x.

b.

The mean of the random variable x is given by,

μ=c+d2=20+452=652=32.5

The standard deviation of x is given by,

σ=d-c12=45-2012=2523=7.2169

Thus, the mean μ=32.5and standard deviation σ=7.2169.

04

The Graph

c.

Here, the 2σlimit is given by,

μ-2σ=32.5-2×7.2169=18.0662μ+2σ=32.5+2×7.2169=46.9338

Here, the interval limits are outside of the actual range of random variable x.

The following graph depicts the relevant situation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Give the z-score for a measurement from a normal distribution for the following:

a. 1 standard deviation above the mean

b. 1 standard deviation below the mean

c. Equal to the mean

d. 2.5 standard deviations below the mean

e. 3 standard deviations above the mean

Lead in metal shredder residue. On the basis of data collectedfrom metal shredders across the nation, the amount xof extractable lead in metal shredder residue has an approximateexponential distribution with meanθ= 2.5 milligramsper liter (Florida Shredder’s Association).

a. Find the probability that xis greater than 2 milligramsper liter.

b. Find the probability that xis less than 5 milligrams perliter.

Safety of underground tunnels. Research published in the journal Tunnelling and Underground Space Technology (July 2014) evaluated the safety of underground tunnels built in rigid soils. A factor of safety (FS), measured as the ratio of capacity over demand, was determined for three different areas of tunnels made from shotcrete: tunnel face, tunnel walls, and tunnel crown. FS was determined to be normally distributed in each area, with means and standard deviations shown in the table. Tunnel failure is considered to occur when FS is lower than or equal to 1. Which tunnel area is more likely to result in failure? Why?


Mean

Standard Deviation

Tunnel Face

1.2

0.16

Tunnel Walls

1.4

0.2

Tunnel Crown

2.1

0.7

Cell phone handoff behavior. Refer to the Journal of Engineering, Computing and Architecture (Vol. 3., 2009) study of cell phone handoff behavior, Exercise 3.47 (p. 183). Recall that a “handoff” describes the process of a cell phone moving from one base channel (identified by a color code) to another. During a particular driving trip, a cell phone changed channels (color codes) 85 times. Color code “b” was accessed 40 times on the trip. You randomly select 7 of the 85 handoffs. How likely is it that the cell phone accessed color code “b” only twice for these 7 handoffs?

Checkout lanes at a supermarket. A team of consultants working for a large national supermarket chain based in the New York metropolitan area developed a statistical model for predicting the annual sales of potential new store locations. Part of their analysis involved identifying variables that influence store sales, such as the size of the store (in square feet), the size of the surrounding population, and the number of checkout lanes. They surveyed 52 supermarkets in a particular region of the country and constructed the relative frequency distribution shown below to describe the number of checkout lanes per store, x.

a. Why do the relative frequencies in the table represent the approximate probabilities of a randomly selected supermarket having x number of checkout lanes?

b. FindE(x) and interpret its value in the context of the problem.

c. Find the standard deviation of x.

d. According to Chebyshev’s Rule (Chapter 2, p. 106), what percentage of supermarkets would be expected to fall withinμ±σ? withinμ±2σ?

e. What is the actual number of supermarkets that fall within? ? Compare your answers with those of part d. Are the answers consistent?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free