Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

4.131 Chemical composition of gold artifacts. The Journal of Open Archaeology Data(Vol. 1, 2012) provided data onthe chemical composition of more than 200 pre-Columbiangold and gold-alloy artifacts recovered in the archaeologicalregion inhabited by the Muisca of Colombia (a.d.600–1800). One of many variables measured was the percentageof copper present in the gold artifacts. Summary statisticsfor this variable follow: mean = 29.94%, median = 19.75%,standard deviation = 28.37%. Demonstrate why the probabilitydistribution for the percentage of copper in thesegold artifacts cannot be normally distributed.

Short Answer

Expert verified

So here mean and median are not the same, hence the probability distribution cannot have a normal distribution.

Step by step solution

01

Given information

One of many variables measured was the percentageof copper present in the gold artifacts. Summary statisticsfor this variable follow: mean = 29.94%, median = 19.75%,standard deviation = 28.37%.

02

Explanation

The property of normal distribution is mean=median

Here the mean is 29.94% and the median is 28.37%.

So here mean and median are not the same, and therefore the probability distribution cannot have a normal distribution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The Apprenticecontestants’ performance ratings. Referto the Significance(April 2015) study of contestants’ performanceson the United Kingdom’s version of the TVshow, The Apprentice, Exercise 2.9 (p. 73). Recall thatthe performance of each of 159 contestants was rated ona 20-point scale. Contestants were also divided into twogroups: those who played for a job and those who playedfor a businesspartnership. These data (simulated, based onstatistics reportedin the article) are saved in the accompanyingfile. Descriptive statistics for each of the two groupsof contestants are displayed in the accompanying Minitabprintout.

a. Determine whether the performance ratings of contestantswho played for a job are approximately normallydistributed.

b. Determine whether the performance ratings of contestantswho played for a business partnership are approximatelynormally distributed.

Descriptive Statistics: Rating

Variable Rating

Price

N

Mean

St.Dev

Minimum

Q

1

median

Q3

Maximum

IQ

R

Job

99

7.879

4.224

1

4

9

11

20

7

Partner

60

8.883

4.809

1

5

8

12

20

7

Errors in measuring truck weights. To help highway planners anticipate the need for road repairs and design futureconstruction projects, data are collected on the estimatedvolume and weight of truck traffic on specific roadways (Transportation Planning Handbook, 2016) using specialized “weigh-in-motion” equipment. In an experiment involving repeated weighing of a 27,907-pound truck, it wasfound that the weights recorded by the weigh-in-motionequipment were approximately normally distributed witha mean of 27,315 and a standard deviation of 628 pounds

(Minnesota Department of Transportation). It follows thatthe difference between the actual weight and recordedweight, the error of measurement, is normally distributedwith a mean of 592 pounds and a standard deviation of 628pounds.

a. What is the probability that the weigh-in-motion equipment understates the actual weight of the truck?

b. If a 27,907-pound truck was driven over the weigh-in-motion equipment 100 times, approximately howmany times would the equipment overstate the truck’sweight?

c. What is the probability that the error in the weightrecorded by the weigh-in-motion equipment for a27,907-pound truck exceeds 400 pounds?

d. It is possible to adjust (or calibrate) the weigh-in-motion equipment to control the mean error of measurement. At what level should the mean error beset so the equipment will understate the weight of a27,907-pound truck 50% of the time? Only 40% of thetime

Which of the following describe discrete random variables, and which describe continuous random variables?

a. The number of damaged inventory items

b. The average monthly sales revenue generated by a salesperson over the past year

c. Square feet of warehouse space a company rents

d. The length of time a firm must wait before its copying machine is fixed

USDA chicken inspection. In Exercise 3.19 (p. 170), you learned that one in every 100 slaughtered chickens passes USDA inspection with fecal contamination. Consider a random sample of three slaughtered chickens that all pass USDA inspection. Let x equal the number of chickens in the sample that has fecal contamination.

  1. Find p(x)for x = 0, 1, 2, 3.
  2. Graph p(x).
  3. Find P(x1).

Mean shifts on a production line. Six Sigma is a comprehensive approach to quality goal setting that involves statistics. An article in Aircraft Engineering and Aerospace Technology (Vol. 76, No. 6, 2004) demonstrated the use of the normal distribution in Six Sigma goal setting at Motorola Corporation. Motorola discovered that the average defect rate for parts produced on an assembly line varies from run to run and is approximately normally distributed with a mean equal to 3 defects per million. Assume that the goal at Motorola is for the average defect rate to vary no more than 1.5 standard deviations above or below the mean of 3. How likely is it that the goal will be met?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free