Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If a population data set is normally distributed, what isthe proportion of measurements you would expect to fallwithin the following intervals?

a.μ±σb.μ±2σc.μ±3σ

Short Answer

Expert verified

a. The proportion of measurements that fall in the interval is 68%

b.The proportion of measurements that fall in the interval is 95%

c.The proportion of measurements that fall in the interval is 100%

Step by step solution

01

Given Information

The population is normally distributed.

02

Calculating the proportion when μ±2σ

b.

From the property of normal distribution,

Pμ-σ<X<μ+σ=Pμ-σ-μσ<X-μσ<μ-σ-μσ=P-1<Z<1=PZ<1-PZ-1=0.84134-0.15866=0.68269𝆏0.68Pμ-σ<X<μ+σ𝆏0.68

The proportion of measurements that fall within 1 standard deviation of the mean is approximately 68%.

03

Calculating the proportion when

Pμ-2σ<X<μ+2σ=Pμ-2σ-μσ<X-μσ<μ-2σ-μσ=P-2<Z<2=PZ<2-PZ-2=0.97725-0.02275=0.9545𝆏0.95Pμ-2σ<X<μ+2σ𝆏0.95

The proportion of measurements that fall within 2 standard deviations of the mean is approximately95%.

04

Calculating the proportion when

c.

Pμ-3σ<X<μ+3σ=Pμ-3σ-μσ<X-μσ<μ-3σ-μσ=P-3<Z<3=PZ<3-PZ-3=0.99865-0.00135=0.9973𝆏1Pμ-3σ<X<μ+3σ𝆏1

The proportion of measurements that fall within 3 standard deviations of the mean is approximately 100%.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Variable speed limit control for freeways. A common transportation problem in large cities is congestion on the freeways. In the Canadian Journal of Civil Engineering (January 2013), civil engineers investigated the use of variable speed limits (VSL) to control the congestion problem. A portion of an urban freeway was divided into three sections of equal length, and variable speed limits were posted (independently) in each section. Probability distributions of the optimal speed limits for the three sections were determined. For example, one possible set of distributions is as follows (probabilities in parentheses). Section 1: 30 mph (.05), 40 mph (.25), 50 mph (.25), 60 mph (.45); Section 2: 30 mph (.10), 40 mph (.25), 50 mph (.35), 60 mph (.30); Section 3: 30 mph (.15), 40 mph (.20), 50 mph (.30), 60 mph (.35).

  1. Verify that the properties of a discrete probability distribution are satisfied for Section 1 of the freeway.
  2. Repeat part a for Sections 2 and 3 of the freeway.
  3. Find the probability that a vehicle traveling at the speed limit in Section 1 will exceed 30 mph.
  4. Repeat part c for Sections 2 and 3 of the freeway.

Estimating demand for white bread. A bakery has determined that the number of loaves of its white bread demanded daily has a normal distribution with mean 7,200 loaves and standard deviation 300 loaves. Based on cost considerations, the company has decided that its best strategy is to produce a sufficient number of loaves so that it will fully supply demand on 94% of all days.

a. How many loaves of bread should the company produce?

b. Based on the production in part a, on what percentage of days will the company be left with more than 500 loaves of unsold bread?

Flaws in the plastic-coated wire. The British Columbia Institute of Technology provides on its Web site (www.math.bcit.ca) practical applications of statistics at mechanical engineering firms. The following is a Poisson application. A roll of plastic-coated wire has an average of .8 flaws per 4-meter length of wire. Suppose a quality-control engineer will sample a 4-meter length of wire from a roll of wire 220 meters in length. If no flaws are found in the sample, the engineer will accept the entire roll of wire. What is the probability that the roll will be rejected? What assumption did you make to find this probability?

Industrial filling process. The characteristics of an industrialfilling process in which an expensive liquid is injectedinto a container were investigated in the Journal of QualityTechnology(July 1999). The quantity injected per containeris approximately normally distributed with mean 10

units and standard deviation .2 units. Each unit of fill costs\(20 per unit. If a container contains less than 10 units (i.e.,is underfilled), it must be reprocessed at a cost of \)10. A properly filled container sells for $230.

a. Find the probability that a container is underfilled. Notunderfilled.

b. A container is initially underfilled and must be reprocessed.Upon refilling, it contains 10.60 units. Howmuch profit will the company make on thiscontainer?

c. The operations manager adjusts the mean of the fillingprocess upward to 10.60 units in order to makethe probability of underfilling approximately zero.

Under these conditions, what is the expected profit percontainer?

Which of the following describe discrete random variables, and which describe continuous random variables?

a. The number of damaged inventory items

b. The average monthly sales revenue generated by a salesperson over the past year

c. Square feet of warehouse space a company rents

d. The length of time a firm must wait before its copying machine is fixed

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free