Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Hotel guest satisfaction. Refer to the 2015 North American Hotel Guest Satisfaction Index Study, Exercise 4.49 (p. 239). You determined that the probability that a hotel guest was delighted with his or her stay and would recommend the hotel is .12. Suppose a large hotel chain randomly samples 200 of its guests. The chain’s national director claims that more than 50 of these guests were delighted with their stay and would recommend the hotel.

a. Under what scenario is the claim likely to be false?

b. Under what scenario is the claim likely to be true?

Short Answer

Expert verified

a. The guests were delighted with the stay and would recommend the hotel is 0.12. It will not say that more than 50 out of 200 guests were delighted with the stay and would recommend the hotel since the obtained probability value is extremely small; under this scenario claim is likely to be false.

b. The probability that more than 50 out of 200 guests were delighted with the stay and would recommend the hotel must be higher than 0.12, under this scenario, is the claim likely to be true.

Step by step solution

01

Given information

Referring to the 2015 North American Hotel Guest Satisfaction Index Study, Exercise 4.49, the hotel guest was delighted with their stay and would recommend the hotel is 0.12. A large hotel chain randomly samples 200 guests. More than 50 out of 200 guests were delighted with the stay and would recommend the hotel.

02

Step 2:(a) Identify the scenario in the case the claim is likely to be false

The probability that 50 out of 200 guests were delighted with the stay and would recommend the hotel is,

The mean is,

μ=np=200×0.12=24

The variance is,

σ2=np1-p=200×0.12×1-0.12=200×0.12×0.88=21.12

The standard deviation is,

σ=21.12=4.5957

For,x=50

The z-score is,

z=x-μσ=50-244.5957=5.6575

Px>50=1-Pz5.6575=1-1FromStandardNormalTable=0

The probability value is 0

Therefore, the guests were delighted with the stay and would recommend the hotel is 0.12. Then it will unlike to say that more than 50 out of 200 guests were delighted with the stay and would recommend the hotel since the obtained probability value is extremely small,under this scenario is claimed likely to be false.

03

Step 3:(b) Identify the scenario in the case the claim is likely to be true

If the claim is likely to be true, then the probability that more than 50 out of 200 guests were delighted with the stay and would recommend the hotel must be higher than 0.12; under this scenario is, the claim likely to be true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When to replace a maintenance system. An article in the Journal of Quality of Maintenance Engineering (Vol. 19,2013) studied the problem of finding the optimal replacement policy for a maintenance system. Consider a system that is tested every 12 hours. The test will determine whether there are any flaws in the system. Assume that the probability of no flaw being detected is .85. If a flaw (failure) is detected, the system is repaired. Following the fifth failed test, the system is completely replaced. Now, let x represent the number of tests until the system needs to be replaced.

a. Give the probability distribution for x as a formula.

b. Find the probability that the system needs to be replaced after 8 total tests.

Making high-stakes insurance decisions. The Journal of Economic Psychology (September 2008) published the results of a high-stakes experiment in which subjects were asked how much they would pay for insuring a valuable painting. The painting was threatened by fire and theft, hence, the need for insurance. To make the risk realistic, the subjects were informed that if it rained on exactly 24 days in July, the painting was considered to be stolen; if it rained on exactly 23 days in August, the painting was considered to be destroyed by fire. Although the probability of these two events, “fire” and “theft,” was ambiguous for the subjects, the researchers estimated their probabilities of occurrence at .0001. Rain frequencies for the months of July and August were shown to follow a Poisson distribution with a mean of 10 days per month.

a. Find the probability that it will rain on exactly 24 days in July.

b. Find the probability that it will rain on exactly 23 days in August.

c. Are the probabilities, parts a and b, good approximations to the probabilities of “fire” and “theft”?

Assume that xis a random variable best described by a uniform distribution with c=10andd=90.

a. Findf(x).

b. Find the mean and standard deviation of x.

c. Graph the probability distribution for xand locate its mean and theintervalon the graph.

d. FindP(x60).

e. FindP(x90).

f. FindP(x80).

g. FindP(μ-σxμ+σ).

h. FindP(x>75).

Find the following probabilities for the standard normal

random variable z:

a.P(z2.1)

b.P(z2.1)

c.P(z-1.65)

d.P(-2.13z-.41)

e.P(-1.45z2.15)

f.P(z-1.43)

4.127 Rankings of research universities. Refer to the CollegeChoice2015 Rankings of National Research Universities,Exercise 2.110 (p. 125). Data on academic reputation scores for the top 50 research universities (saved in the file) are listed in the accompanying table. Would you recommend using the normal distribution to approximate the distribution of academic reputation scores?

99 92 94 95 97 91 91 92 92 89 84 85 100 87 83

83 89 79 94 79 79 87 76 67 76 76 76 70 74 64

74 69 66 72 65 76 64 65 61 69 62 69 52 64 64

47 60 57 63 62

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free