Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Privacy and information sharing. Refer to the Pew Internet & American Life Project Survey (January 2016), Exercise 4.48 (p. 239). The survey revealed that half of all U.S. adults would agree to participate in a free cost-saving loyalty card program at a grocery store, even if the store could potentially sell these data on the customer’s shopping habits to third parties. In a random sample of 250 U.S. adults, let x be the number who would participate in the free loyalty card program.

a. Find the mean of x. (This value should agree with your answer to Exercise 4.48c.)

b. Find the standard deviation of x.

c. Find the z-score for the value x = 200.

d. Find the approximate probability that the number of the 250 adults who would participate in the free loyalty card program is less than or equal to 200.

Short Answer

Expert verified

a.μ=125b.σ=7.9057c.z=9.4868d.Theapproximateprobabilityis1

Step by step solution

01

Given information

Referring to the Paw Internet & American Life Project Survey (January 2016), exercise 4.48.

x be the participate in the free loyalty card program, which follows a binomial distribution with n = 250 and p = 0.5

02

Calculation of mean

a.μ=np=250×0.5=125μ=125

Therefore, the mean of x is 125.

03

Calculation of standard deviation

b.σ=np(1-p)=250×0.5×(1-0.5)=250×0.5×0.5=7.9057σ=7.9057

Therefore, the variance of x is 7.9057.

04

Calculation of z-score

c.μ=125σ=7.9057x=200

The z-score is,

z=x-μσ=200-1257.9057=9.4868z=9.4868

Therefore, the z-score is 9.4868.

05

Finding the approximate probability

d.P(x200)=P(x200)=P(z9.4868)=1P(x200)=1

Therefore, the approximate probability is 1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Waiting for a car wash. An automatic car wash takes exactly 5 minutes to wash a car. On average, 10 cars per hour arrive at the car wash. Suppose that 30 minutes before closing time, 5 cars are in line. If the car wash is in continuous use until closing time, will anyone likely be in line at closing time?

Which of the following describe discrete random variables, and which describe continuous random variables?

a. The number of damaged inventory items

b. The average monthly sales revenue generated by a salesperson over the past year

c. Square feet of warehouse space a company rents

d. The length of time a firm must wait before its copying machine is fixed

If x is a binomial random variable, compute for each of the following cases:

  1. n = 4, x = 2, p = .2
  2. n = 3, x = 0, p = .7
  3. n = 5, x = 3, p = .1
  4. n = 3, x = 1, p = .9
  5. n = 3, x = 1, p = .3
  6. n = 4, x = 2, p = .6

Suppose χ is a normally distributed random variable with μ=50 and σ=3 . Find a value of the random variable, call it χ0 , such that

a)P(χχ0)=.8413

b)P(χ>χ0)=.025

c)P(χ>χ0)=.95

d)P(41χχ0)=.8630

e) 10% of the values of role="math" localid="1652160513072" χare less thanrole="math" localid="1652160519976" χ0

f)1% of the values ofχ are greater thanχ0

4.133 Suppose xis a random variable best described by a uniform

probability distribution with c= 20 and d= 45.

a. Find f(x)

b. Find the mean and standard deviation of x.

c. Graph f (x) and locate μand the interval μ±2σonthe graph. Note that the probability that xassumes avalue within the interval μ±2σis equal to 1.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free