Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Detecting anthrax. Researchers at the University of SouthFlorida Center for Biological Defense have developed asafe method for rapidly detecting anthrax spores in powdersand on surfaces (USF Magazine, Summer 2002). Themethod has been found to work well even when there arevery few anthrax spores in a powder specimen. Considera powder specimen that has exactly 10 anthrax spores.Suppose that the number of anthrax spores in the sampledetected by this method follows an approximate uniformdistribution between 0 and 10.

a. Find the probability that 8 or fewer anthrax spores are detected in the powder specimen.

b. Find the probability that between 2 and 5 anthrax spores are detected in the powder specimen.

Short Answer

Expert verified

a. The probability that 8 or fewer anthrax spores are detected in the powder specimen is 0.8 .

b. The probability that between 2 and 5 anthrax spores are detected in the powder specimen is. 0.3 .

Step by step solution

01

Given information

The powder specimen has exactly 10anthrax spores.

The number of anthrax spores follows an approximate uniform distribution between 0 and 10.

02

Step 2:Define the probability density function

Let, X denote the number of anthrax spores

X follows a uniform distribution.

The p.d.f of X is given by,

fx=1d-c;cxd=110-0;x10=110

03

Compute the probability

The probability that 8 or fewer anthrax spores are detected in the powder specimen is PX8.

PX8=08fxdx=08110dx=810=0.8

Hence, the probability that 8 or fewer anthrax spores are detected in the powder specimen is 0.8 .

04

Compute the probability

The probability that between 2 and 5 anthrax spores are detected in the powder specimen isP2X5 .

P2X5=25fxdx=25110dx=5-210=310=0.3

Hence, the probability that between 2 and 5 anthrax spores are detected in the powder specimen is. 0.3 .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Variable life insurance return rates. With a variable life insurance policy, the rate of return on the investment (i.e., the death benefit) varies from year to year. A study of these variable return rates was published in International Journal of Statistical Distributions (Vol. 1, 2015). A transformedratio of the return rates (x) for two consecutive years was shown to have a normal distribution, with μ=1.5 and role="math" localid="1660283206727" σ=0.2. Use the standard normal table or statistical software to find the following probabilities.

a.P(1.3<x<1.6)

b. P(x>1.4)

c. P(x<1.5)

Suppose xis a binomial random variable with n= 20 and

p= .7.

a. FindP(x=14).

b. FindP(x12).

c. FindP(x>12).

d. FindP(9x18).

e. FindP(8<x<18).

f. Findμ,σ2, andσ.

g. What is the probability that xis in the intervalμ±2σ?

Tracking missiles with satellite imagery.The Space-BasedInfrared System (SBIRS) uses satellite imagery to detect andtrack missiles (Chance, Summer 2005). The probability thatan intruding object (e.g., a missile) will be detected on aflight track by SBIRS is .8. Consider a sample of 20 simulated tracks, each with an intruding object. Let x equal the numberof these tracks where SBIRS detects the object.

a. Demonstrate that x is (approximately) a binomial randomvariable.

b. Give the values of p and n for the binomial distribution.

c. Find P(x=15), the probability that SBIRS will detect the object on exactly 15 tracks.

d. Find P(x15), the probability that SBIRS will detect the object on at least 15 tracks.

e. FindE(x) and interpret the result.

Box plots and the standard normal distribution. What relationship exists between the standard normal distribution and the box-plot methodology (Section 2.8) for describing distributions of data using quartiles? The answer depends on the true underlying probability distribution of the data. Assume for the remainder of this exercise that the distribution is normal.

a. Calculate the values of the standard normal random variable z, call them zL and zU, that correspond to the hinges of the box plot—that is, the lower and upper quartiles, QL and QU—of the probability distribution.

b. Calculate the zvalues that correspond to the inner fences of the box plot for a normal probability distribution.

c. Calculate the zvalues that correspond to the outer fences of the box plot for a normal probability distribution.

d. What is the probability that observation lies beyond the inner fences of a normal probability distribution? The outer fences?

e. Can you better understand why the inner and outer fences of a box plot are used to detect outliers in a distribution? Explain.

Examine the sample data in the accompanying table.

5.9 5.3 1.6 7.4 8.6 1.2 2.1

4.0 7.3 8.4 8.9 6.7 4.5 6.3

7.6 9.7 3.5 1.1 4.3 3.3 8.4

1.6 8.2 6.5 1.1 5.0 9.4 6.4

a. Construct a stem-and-leaf plot to assess whether thedata are from an approximately normal distribution.

b. Compute sfor the sample data.

c. Find the values of QL and QU, then use these values andthe value of sfrom part b to assess whether the data comefrom an approximately normaldistribution.

d. Generate a normal probability plot for the data and useit to assess whether the data are approximately normal.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free