Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Are you really being served red snapper? Red snapper is arare and expensive reef fish served at upscale restaurants. Federal law prohibits restaurants from serving a cheaper, look-alike variety of fish (e.g., vermillion snapper or lane snapper) to customers who order red snapper. Researchers

at the University of North Carolina used DNA analysis to examine fish specimens labeled “red snapper” that were purchased from vendors across the country (Nature, July 15, 2004). The DNA tests revealed that 77% of the specimens were not red snapper but the cheaper, look-alike variety of fish.

a. Assuming the results of the DNA analysis are valid, what is the probability that you are actually served red snapper the next time you order it at a restaurant?

b. If there are five customers at a chain restaurant, all who have ordered red snapper, what is the probability that at least one customer is actually served red snapper?

Short Answer

Expert verified

(a) The customer served red snapper is 0.23

(b) The probability that at least one customer is actually served red snapper is 0.729

Step by step solution

01

Given information and definitions.

According to the information

A=Specimen is not red snapper.

B=All five specimen is not red snapper.

The formula for probabilityP=favourableoutcomestotaloutcomes.

The general rule of compliment isP(Ac)=1-P(A)

02

Find the probability

PA=77%=077PAc=1-PA=1-0.77=0.23

Therefore,Red snapper represents 0.23 of the customer served fish.

03

Step 3:The probability that at least one customer is actually served red snapper

PABPAandB=PA.PBPA=PB5=0.775=0.2707

The complement is

PBc=1-PB=1-0.2707=0.729

Hence, Red snapper will likely be provided to at least one consumer in 0.729 of cases.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ranking razor blades.The corporations in the highly competitive razor blade industry do a tremendous amount of advertising each year. Corporation G gave a supply of three top-name brands, G, S, and W, to a consumer and asked her to use them and rank them in order of preference.

The corporation was, of course, hoping the consumer would prefer its brand and rank it first, thereby giving them some material for a consumer interview advertising campaign. If the consumer did not prefer one blade over any other but was still required to rank the blades, what is the probability that

a.The consumer ranked brand G first?

b.The consumer ranked brand G last?

c.The consumer ranked brand G last and brand W second?

d.The consumer ranked brand W first, brand G second, and brand S third?

Wine quality and soil.The Journal of Wine Research(Vol.21, 2010) published a study of the effects of soil and climate on the quality of wine produced in Spain. The soil at two vineyards— Llarga and Solar—was the focus of the analysis.Wine produced from grapes grown in each of the two vineyards

was evaluated for each of three different years (growing seasons) by a wine-tasting panel. Based on the taste tests, the panel (as a group) selected the wine with the highest quality.

a.How many different wines were evaluated by the panel, where one wine was produced for each vineyard/growing season combination?

b.If the wines were all of equal quality, what is the probability that the panel selected a Llarga wine as the wine with the highest quality?

c.If the wines were all of equal quality, what is the probability that the panel selected a wine produced in year 3 as the wine with the highest quality?

d.The panel consisted of four different wine tasters who performed the evaluations independently of each other. If the wines were all of equal quality, what is the probability that all four tasters selected a Llarga wine as the wine with the highest quality?

Simulate the experiment described in Exercise 3.7 using any five identically shaped objects, two of which are one colour and the three another colour. Mix the objects, draw two, record the results, and then replace the objects. Repeat the experiment a large number of times (at least 100). Calculate the proportion of time events A, B, and C occur. How do these proportions compare with the probabilities you calculated in Exercise 3.7? Should these proportions equal the probabilities? Explain.

Problems at major companies. The Organization Development Journal (Summer 2006) reported on a survey of human resource officers (HROs) at major employers. The focus of the study was employee behaviour, namely, absenteeism and turnover. The study found that 55% of the HROs had problems with employee absenteeism; 41% had problems with turnover. Suppose that 22% of the HROs had problems with both absenteeism and turnover. Use this information to find the probability that an HRO selected from the group surveyed had problems with either employee absenteeism or employee turnover.

Drug testing in athletes.When Olympic athletes are tested for illegal drug use (i.e., doping), the results of a single positive test are used to ban the athlete from competition. Chance(Spring 2004) demonstrated the application of Bayes’s Rule for making inferences about testosterone abuse among Olympic athletes using the following example: In a population of 1,000 athletes, suppose 100 are illegally using testosterone. Of the users, suppose 50 would test positive for testosterone. Of the nonusers, suppose 9 would test positive.

  1. Given that the athlete is a user, find the probability that a drug test for testosterone will yield a positive result. (This probability represents the sensitivity of the drug test.)
  2. Given the athlete is a nonuser, find the probability that a drug test for testosterone will yield a negative result. (This probability represents the specificityof the drug test.)
  3. If an athlete tests positive for testosterone, use Bayes’s Rule to find the probability that the athlete is really doping. (This probability represents the positive predictive value of the drug test.)
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free