Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problems at major companies. The Organization Development Journal (Summer 2006) reported on a survey of human resource officers (HROs) at major employers. The focus of the study was employee behaviour, namely, absenteeism and turnover. The study found that 55% of the HROs had problems with employee absenteeism; 41% had problems with turnover. Suppose that 22% of the HROs had problems with both absenteeism and turnover. Use this information to find the probability that an HRO selected from the group surveyed had problems with either employee absenteeism or employee turnover.

Short Answer

Expert verified

0.78

Step by step solution

01

Introduction

The probability of an event is a measure of the likelihood of an event occurring when an experiment is performed. When there are just two possible outcomes, complementary occurrences occur. There is another eventAc for every event A, which Acsignifies the complimentary event.

P(Ac)=1(A).

02

Determine the probability that an HRO was chosen from the sample who experienced issues with either employee absenteeism or employee turnover

Let’s take A1 as the HRO problem with employee absenteeism and A2 as the HRO problem with employee turnover.

Therefore, we get:

P(A1)=55%=55100=0.55

P(A2)=41%=41100=0.41

P(A1A2)=22%=22100=0.22

P(A1)=55%=55100=0.55

P(A2)=41%=41100=0.41

P(A1A2)=22%=22100=0.22

Hence, the probability that HRO had a problem with either employee absenteeism or employee turnover is:

P(eitheremployeeabsenteeismoremployeeturnover)=1P(neitheremployeeabsenteeismoremployeeturnover)=10.22=0.78

Therefore, the required probability is 0.78.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

New car crash tests.Refer to the National Highway TrafficSafety Administration (NHTSA) crash tests of new car models, Exercise 2.153 (p. 143). Recall that the NHTSA has developed a “star” scoring system, with results ranging from one star (*) to five stars (*****). The more stars in the rating, the better the level of crash protection in a head-on collision. A summary of the driver-side star ratings for 98 cars is reproduced in the accompanying Minitab

Printout. Assume that one of the 98 cars is selected at random. State whether each of the following is true or false.

a.The probability that the car has a rating of two stars is 4.

b.The probability that the car has a rating of four or five stars is .7857.

c.The probability that the car has a rating of one star is 0.

d.The car has a better chance of having a two-star rating than of having a five-star rating.

Mobile access to social media. The Marketing Management Journal (Fall 2014) published the results of a designed study to investigate satisfaction with the use of mobile devices to access social media. Mobile device users were classified by gender (male or female) and by the social media they use most often (Facebook, Twitter, or YouTube). Consider a similar study in which 10 males and 10 females were sampled for each of the three social media—a total of 60 mobile device users. One of these users is randomly selected. Of interest are his or her gender and most used social media.

a. Use a tree diagram to determine the possible outcomes (sample points) for this experiment.

b. Why should the probabilities assigned to each outcome be equal? Give the value of this probability.

c. Find the probability that the selected user is a female who accesses Twitter most often.

d. Find the probability that the selected user accesses YouTube most often.

Blood diamonds.According to Global Research News(March 4, 2014), one-fourth of all rough diamonds producedin the world are blood diamonds. (Any diamond that is mined in a war zone—often by children—to finance a warlord’s activity, an insurgency, or an invading army’s effort is considered a blood diamond.) Also, 90% of the world’s rough diamonds are processed in Surat, India, and, of these diamonds one-third are blood diamonds.

a.Find the probability that a rough diamond is not a blood diamond.

b.Find the probability that a rough diamond is processed in Surat and is a blood diamond.

Study of why EMS workers leave the job. An investigation into why emergency medical service (EMS) workers leave the profession was published in the Journal of Allied Health (Fall 2011). The researchers surveyed a sample of 244 former EMS workers, of which 127 were fully compensated while on the job, 45 were partially compensated, and 72 had no compensated volunteer positions. EMS workers who left because of retirement were 7 for fully compensated workers, 11 for partially compensated workers, and 10 for no compensated volunteers. One of the 244 former EMS workers is selected at random.

a. Find the probability that the former EMS worker was fully compensated while on the job.

b. Find the probability that the former EMS worker was fully compensated while on the job and left due to retirement.

c. Find the probability that the former EMS worker was not fully compensated while on the job.

d. Find the probability that the former EMS worker was either fully compensated while on the job or left due to retirement.

Scrap rate of machine parts. A press produces parts used in the manufacture of large-screen plasma televisions. If the press is correctly adjusted, it produces parts with a scrap rate of 5%. If it is not adjusted correctly, it produces scrap at a 50% rate. From past company records, the machine is known to be correctly adjusted 90% of the time. A quality-control inspector randomly selects one part from those recently produced by the press and discovers it is defective. What is the probability that the machine is incorrectly adjusted?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free