Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For two events, A and B, P(A)= .4, P(B)= .2 , and P(AB) = .1:

a. Find P (A/B).

b. Find P(B/A).

c. Are A and B independent events?

Short Answer

Expert verified

Answer

  1. 0.50
  2. 0.25
  3. No

Step by step solution

01

Step-by-Step SolutionStep 1: Introduction

The likelihood of an event occurring if another event has already occurred is conditional probability. The conditional probability formula:

P (A/B) =P (AB)P (B)

02

Find the probability

P (A/B) =P (AB)P (B)=.1.2=.50

Hence, the required probability is 0.50.

03

Find the probability

P (B/A) =P (BA)P (A)=.1.4=.25

Hence, the required probability is 0.25.

04

Identify that A and B are independent events

For independent event P (AB) = P(A)×P(B)

HereP(A)×P(B) = .4×.2= 0.08, which means P (AB) = 0.10.08.

No, A and B are not independent events.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Speeding linked to fatal car crashes. According to the National Highway Traffic and Safety Administration’s National Center for Statistics and Analysis (NCSA), “Speeding is one of the most prevalent factors contributing to fatal traffic crashes” (NHTSA Technical Report, August 2005). The probability that speeding is a cause of a fatal crash is .3. Furthermore, the probability that speeding and missing a curve are causes of a fatal crash is .12. Given speeding is a cause of a fatal crash, what is the probability that the crash occurred on a curve?

Two fair dice are tossed, and the face on each die is observed.

  1. Use a tree diagram to find the 36 sample points contained in the sample space.
  2. Assign probabilities to the sample points in part a.
  3. Find the probability of each of the following events:

A = {3showing on each die}

B = {Sum of two numbers showing is}

C = {Sum of two numbers showing is even}

Colors of M&M's candies. When first produced in 1940, M&M's Plain Chocolate Candies came in only brown color. Today, M&Ms in standard bags come in six colors: brown, yellow, red, blue, orange, and green. According to Mars Corporation, 24% of all M&Ms produced are blue, 20% are orange, 16% are green, 14% are yellow, 13% are brown, and 13% are red. Suppose you purchase a randomly selected bag of M&M's Plain Chocolate Candies and randomly select one of the M&M's from the bag. The color of the selected M&M is of interest.

a. Identify the outcomes (sample points) of this experiment.

b. Assign reasonable probabilities to the outcomes, part a.

c. What is the probability that the selected M&M is brown (the original color)?

d. In 1960, the colors red, green, and yellow were added to brown M&Ms. What is the probability that the selected M&M is either red, green, or yellow?

e. In 1995, based on voting by American consumers, the color blue was added to the M&M mix. What is the probability that the selected M&M is not blue?

Most likely coin-tossing sequence. In Parade Magazine’s (November 26, 2000) column “Ask Marilyn,” the following question was posed: “I have just tossed a [balanced] coin 10 times, and I ask you to guess which of the following three sequences was the result. One (and only one) of the sequences is genuine.”

(1) H HHHHHHHHH

(2) H H T T H T T H HH

(3) T TTTTTTTTT

  1. Demonstrate that prior to actually tossing the coins, thethree sequences are equally likely to occur.
  2. Find the probability that the 10 coin tosses result in all heads or all tails.
  3. Find the probability that the 10 coin tosses result in a mix of heads and tails.
  4. Marilyn’s answer to the question posed was “Though the chances of the three specific sequences occurring randomly are equal . . . it’s reasonable for us to choose sequence (2) as the most likely genuine result.” If you know that only one of the three sequences actually occurred, explain why Marilyn’s answer is correct. [Hint: Compare the probabilities in parts b and c.]

“Let’s Make a Deal.”Marilyn vos Savant, who is listedin Guinness Book of World Records Hall of Fame for“Highest IQ,” writes a weekly column in the Sunday newspaper supplement Parade Magazine. Her column, “AskMarilyn,” is devoted to games of skill, puzzles, and mind-bendingriddles. In one issue (Parade Magazine, February 24, 1991), vos Savant posed the following question:

Suppose you’re on a game show, and you’re given a choice of three doors. Behind one door is a car; behind the others, goats. You pick a door—say, #1—and the host, who knows what’s behind the doors, opens another door—say #3—which has a goat. He then says to you, “Do you want to pick door #2?” Is it to your advantage to switch your choice?

Marilyn’s answer: “Yes, you should switch. The first door has a 13 chance of winning [the car], but the second has a 23 chance [of winning the car].” Predictably, vos Savant’s surprising answer elicited thousands of criticalletters, many of them from PhD mathematicians, who disagreed with her. Who is correct, the PhDs or Marilyn?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free