Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For two events, A and B, P(A)=.4 , P(B)= .2, and P(A/B)= .6:

a. Find P (AB).

b. Find P(B/A).

Short Answer

Expert verified

Answer

  1. 0.12
  2. 0.3

Step by step solution

01

Step-by-Step SolutionStep 1: Introduction

The possibility of an event or outcome occurring dependent on the existence of a preceding event or outcome is referred to as conditional probability. It is determined by multiplying the chance of the previous event by the renewed likelihood of the next, or conditional, occurrence.

02

Step 2: Find the probability

Here, we have

P(A)=.4

P(B)= .2

P(A/B)= .6:

The probability ofP (AB):

P (AB) = P (A/B) x P(B)= .6 x .2= .12

Hence, the required probability of 0.12

03

Find the probability

P (B/A) =P (BA)P (A)=.12.4=.3

Hence, the required probability of 0.3

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using game simulation to teach a course. In Engineering Management Research (May 2012), a simulation game approach was proposed to teach concepts in a course on production. The proposed game simulation was for cola or television production. The products are two color television models, A and B. Each model comes in two colors, red and black. Also, the quantity ordered for each model can be 1, 2, or 3 televisions. The choice of model, color, and quantity is specified on a purchase order card.

a. Using a tree diagram, list how many different purchase order cards are possible. (These are the sample points for the experiment.)

b. Suppose, from past history, that black color TVs are in higher demand than red TVs. For planning purposes, should the engineer managing the production process assign equal probabilities to the simple events, part a? Why or why not?

The outcomes of two variables are (Low, Medium, High) and (On, Off), respectively. An experiment is conducted in which the outcomes of each of the two variables are observed. The accompanying two-way table gives the probabilities associated with each of the six possible outcome pairs.

Low

Medium

High

On

.50

.10

.05

Off

.25

.07

.03

Consider the following events:

A: {On}

B: {Medium or on}

C: {Off and Low}

D: {High}

a. Find P (A).

b. Find P (B).

c. Find P (C).

d. Find P (D).

e. FindP(AC).

f. FindP(AB).

g. FindP(AB).

h. Consider each pair of events (A and B, A and C, A and D, B and C, B and D, C and D). List the pairs of events that are mutually exclusive. Justify your choices.

Working mothers with children. The U.S. Census Bureaureports a growth in the percentage of mothers in the workforce who have infant children. The following table gives a breakdown of the marital status and working status of mothers with infant children in the year 2014. (The numbers in the table are reported in thousands.) Consider the following events: A = {Mom with infant works}, B = {Mom with infant is married}. Are A and B independent events?

working

Not working

Married

6027

4064

No spouse

2147

1313

(Data from U.S. Census Bureau, Bureau of LabourStatistics, 2014 (Table 4).

Working on summer vacation. Is summer vacation a break from work? Not according to a Harris Interactive (July 2013) poll of U.S. adults. The poll found that 61% of the respondents work during their summer vacation, 22% do not work while on vacation, and 17% are unemployed. Assuming these percentages apply to the population of U.S. adults, consider the work status during the summer vacation of a randomly selected adult.

a. What is the Probability that the adult works while on summer vacation?

b. What is the Probability that the adult will not work while on summer vacation, either by choice or due to unemployment?

Three fair coins are tossed and either heads(H) or tails(T) are observed for each coin.

  1. List the sample points for the experiment.
  2. Assign probabilities to the sample points.
  3. Determine the probability of observing each of the following events:

A= {Three heads are observed}

B= {Exactly two heads are observed}

C= {At least two heads are observed}

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free