Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Drug testing in athletes.When Olympic athletes are tested for illegal drug use (i.e., doping), the results of a single positive test are used to ban the athlete from competition. Chance(Spring 2004) demonstrated the application of Bayes’s Rule for making inferences about testosterone abuse among Olympic athletes using the following example: In a population of 1,000 athletes, suppose 100 are illegally using testosterone. Of the users, suppose 50 would test positive for testosterone. Of the nonusers, suppose 9 would test positive.

  1. Given that the athlete is a user, find the probability that a drug test for testosterone will yield a positive result. (This probability represents the sensitivity of the drug test.)
  2. Given the athlete is a nonuser, find the probability that a drug test for testosterone will yield a negative result. (This probability represents the specificityof the drug test.)
  3. If an athlete tests positive for testosterone, use Bayes’s Rule to find the probability that the athlete is really doping. (This probability represents the positive predictive value of the drug test.)

Short Answer

Expert verified
  1. The probability that a drug test for testosterone will yield a positive result is 0.5.
  2. The probability that a drug test for testosterone will yield a negative result Is 0.09.
  3. The probability that the athlete is really doping is 0.8475.

Step by step solution

01

Important formula

The formula for probability is P=FavourableoutcomesTotaloutcomes

02

(a) Find the probability that a drug test for testosterone will yield a positive result

The sample is:

A = athletes use the substances.

H = healthy subject is test positive

P(H|A)=50100=0.5

So, the probability that a drug test for testosterone will yield a positive result is 0.5.

03

(b) Determine the probability that a drug test for testosterone will yield a negative result

P(H|A)=no.ofathlete'snegativeinsubstancetotalno.ofpersonsuseilleagalsubstance=9100=0.09

Hence, the probability that a drug test for testosterone will yield a negative result Is 0.09.

04

(c) Find the probability that the athlete is really doping

By using the Bayes’ rule.

P(A|H)=P(H|A).P(A)P(H|A).P(A)+P(H|AC).P(AC)=(0.5)(0.1)(0.5)(0.1)+(0.01)(0.9)=0.8475

Therefore, the probability that the athlete is really doping is 0.8475.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Workers’ unscheduled absence survey. Each year CCH, Inc., a firm that provides human resources and employment law information, conducts a survey on absenteeism in the workplace. The latest CCH Unscheduled Absence Surveyfound that of all unscheduled work absences, 34% are due to “personal illness,” 22% for “family issues,” 18% for “personal needs,” 13% for “entitlement mentality,” and 13% due to “stress.” Consider a randomly selected employee who has an unscheduled work absence.

a. List the sample points for this experiment.

b. Assign reasonable probabilities to the sample points.

c. What is the probability that the absence is due to something other than “personal illness”?

Compute the number of ways can select n element from N element of each of the following:

  1. n=2,N=5
  2. n=3,N=6
  3. n=5,N=20

Reliability of gas station air gauges. Tire and automobile manufacturers and consumer safety experts all recommend that drivers maintain proper tire pressure in their cars. Consequently, many gas stations now provide air pumps and air gauges for their customers. In a Research Note(Nov. 2001), the National Highway Traffic Safety Administration studied the reliability of gas station air gauges. The next table gives the percentage of gas stations that provide air gauges that over-report the pressure level in the tire.

a. If the gas station air pressure gauge reads 35 psi, what is the probability that the pressure is over-reported by 6 psi or more?

b. If the gas station air pressure gauge reads 55 psi, what is the probability that the pressure is over-reported by 8 psi or more?

c. If the gas station air pressure gauge reads 25 psi, what is the probability that the pressure is not over-reported by 4 psi or more?

d. Are the events A= {over report by 4 psi or more} and B= {over report by 6 psi or more} mutually exclusive?

e.Based on your answer to part d, why do the probabilities in the table not sum to 1?

World Cup soccer match draws. Every 4 years the world’s 32 best national soccer teams compete for the World Cup. Run by FIFA (Fédération Internationale de Football Association), national teams are placed into eight groups of four teams, with the group winners advancing to play for the World Cup. Chance(Spring 2007) investigated the fairness of the 2006 World Cup draw. Each of the top 8 seeded teams (teams ranked 1–8, called pot 1) were placed into one of the eight groups (named Group A, B, C, D, E, F, G, and H). The remaining 24 teams were assigned to 3 pots of 8 teams each to achieve the best possible geographic distribution between the groups. The teams in pot 2 were assigned to groups as follows: the first team drawn was placed into Group A, the second team drawn was placed in to Group B, etc. Teams in pots 3 and 4 were assigned to the groups in similar fashion. Because teams in pots 2–4 are not necessarily placed there based on their world ranking, this typically leads to a “group of death,” i.e., a group involving at least two highly seeded teams where only one can advance.

  1. In 2006, Germany (as the host country) was assigned as the top seed in Group A. What is the probability that Paraguay (with the highest ranking in pot 2) was assigned to Group A?
  2. Many soccer experts viewed the South American teams (Ecuador and Paraguay) as the most dangerous teams in pot 2. What is the probability one of the South American teams was assigned to Group A?
  3. In 2006, Group B was considered the “group of death,” with England (world rank 2), Paraguay (highest rank in pot 2), Sweden (2nd highest rank in pot 3), and Trinidad and Tobago. What is the probability that Group B included the team with the highest rank in pot 2 and the team with one of the top two ranks in pot 3?
  4. In drawing teams from pot 2, there was a notable exception in 2006. If a South American team (either Ecuador or Paraguay) was drawn into a group with another South American team, it was automatically moved to the next group. This rule impacted Group C (Argentina as the top seed) and Group F (Brazil as the top seed), because they already had South American teams, and groups that followed these groups in the draw. Now Group D included the eventual champion Italy as its top seed. What is the probability that Group D was not assigned one of the dangerous South American teams in pot 2?

For two events, A and B, P(A)=.4 , P(B)= .2, and P(A/B)= .6:

a. Find P (AB).

b. Find P(B/A).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free