Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

New car crash tests.Refer to the National Highway TrafficSafety Administration (NHTSA) crash tests of new car models, Exercise 2.153 (p. 143). Recall that the NHTSA has developed a “star” scoring system, with results ranging from one star (*) to five stars (*****). The more stars in the rating, the better the level of crash protection in a head-on collision. A summary of the driver-side star ratings for 98 cars is reproduced in the accompanying Minitab

Printout. Assume that one of the 98 cars is selected at random. State whether each of the following is true or false.

a.The probability that the car has a rating of two stars is 4.

b.The probability that the car has a rating of four or five stars is .7857.

c.The probability that the car has a rating of one star is 0.

d.The car has a better chance of having a two-star rating than of having a five-star rating.

Short Answer

Expert verified
  1. The solution is false.
  2. The solution is true.
  3. The solution is true
  4. The solution is false.

Step by step solution

01

The probability that the car has a rating of two stars is 4.(a)

The solution is false because P(2star)=4.08%=0.048.

Thus, the solution is false.

02

The probability that the car has a rating of four or five stars is .7857.(b)

The solution is true because

P(4 star  or  5 star)=60.20%+18.37%=6.020+1.837=7.857

Accordingly, the solution is true.

03

The probability that the car has a rating of one star is 0.(c)

The solution is true, because the data of one star is not given, so the probability is 0.

Hence, the solution is true.

04

The car has a better chance of having a two-star rating than of having a five-star rating.(d)

The solution is false because the probability of two star rating is 0.048 and five star rating is 1.837.

Therefore, the solution is false.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Study of why EMS workers leave the job. An investigation into why emergency medical service (EMS) workers leave the profession was published in the Journal of Allied Health (Fall 2011). The researchers surveyed a sample of 244 former EMS workers, of which 127 were fully compensated while on the job, 45 were partially compensated, and 72 had no compensated volunteer positions. EMS workers who left because of retirement were 7 for fully compensated workers, 11 for partially compensated workers, and 10 for no compensated volunteers. One of the 244 former EMS workers is selected at random.

a. Find the probability that the former EMS worker was fully compensated while on the job.

b. Find the probability that the former EMS worker was fully compensated while on the job and left due to retirement.

c. Find the probability that the former EMS worker was not fully compensated while on the job.

d. Find the probability that the former EMS worker was either fully compensated while on the job or left due to retirement.

The outcomes of two variables are (Low, Medium, High) and (On, Off), respectively. An experiment is conducted in which the outcomes of each of the two variables are observed. The accompanying two-way table gives the probabilities associated with each of the six possible outcome pairs.

Low

Medium

High

On

.50

.10

.05

Off

.25

.07

.03

Consider the following events:

A: {On}

B: {Medium or on}

C: {Off and Low}

D: {High}

a. Find P (A).

b. Find P (B).

c. Find P (C).

d. Find P (D).

e. FindP(AC).

f. FindP(AB).

g. FindP(AB).

h. Consider each pair of events (A and B, A and C, A and D, B and C, B and D, C and D). List the pairs of events that are mutually exclusive. Justify your choices.

Drug testing in athletes.When Olympic athletes are tested for illegal drug use (i.e., doping), the results of a single positive test are used to ban the athlete from competition. Chance(Spring 2004) demonstrated the application of Bayes’s Rule for making inferences about testosterone abuse among Olympic athletes using the following example: In a population of 1,000 athletes, suppose 100 are illegally using testosterone. Of the users, suppose 50 would test positive for testosterone. Of the nonusers, suppose 9 would test positive.

  1. Given that the athlete is a user, find the probability that a drug test for testosterone will yield a positive result. (This probability represents the sensitivity of the drug test.)
  2. Given the athlete is a nonuser, find the probability that a drug test for testosterone will yield a negative result. (This probability represents the specificityof the drug test.)
  3. If an athlete tests positive for testosterone, use Bayes’s Rule to find the probability that the athlete is really doping. (This probability represents the positive predictive value of the drug test.)

For two events, A and B, P(A)=.4 , P(B)= .2, and P(A/B)= .6:

a. Find P (AB).

b. Find P(B/A).

Ambulance response time.Geographical Analysis(Jan. 2010) presented a study of emergency medical service (EMS) ability to meet the demand for an ambulance. In one example, the researchers presented the following scenario. An ambulance station has one vehicle and two demand locations, A and B. The probability that the ambulance can travel to a location in under 8 minutes is .58 for location A and .42 for location B. The probability that the ambulance is busy at any point in time is .3.

a.Find the probability that EMS can meet the demand for an ambulance at location A.

b.Find the probability that EMS can meet the demand for an ambulance at location B.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free