Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:If the analysis of variance F-test leads to the conclusion that at least one of the model parameters is nonzero, can you conclude that the model is the best predictor for the dependent variable ? Can you conclude that all of the terms in the model are important for predicting ? What is the appropriate conclusion?

Short Answer

Expert verified

It cannot be concluded if a model parameter is a best predictor for model or it can be concluded if all the term in the model is important just on the basis of F-test.

Step by step solution

01

Step-by-Step Solution Step 1: Best predictor for the dependent variable

It cannot be concluded if a model is the best predictor for the dependent variable y because the F-test leads to the conclusion that at least one of the model parameters is nonzero since it does not compare this model to other models which can be fitted to the data.

02

Overall goodness of the fit

Similarly, it cannot concluded that all the terms in the model are important in predicting just through the F-test because we only know one of the parameters is zero but we do not know if all the parameters are zero.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Tilting in online poker. In poker, making bad decisions due to negative emotions is known as tilting. A study in the Journal of Gambling Studies (March, 2014) investigated the factors that affect the severity of tilting for online poker players. A survey of 214 online poker players produced data on the dependent variable, severity of tilting (y), measured on a 30-point scale (where higher values indicate a higher severity of tilting). Two independent variables measured were poker experience (x1, measured on a 30-point scale) and perceived effect of experience on tilting (x2, measured on a 28-point scale). The researchers fit the interaction model, . The results are shown below (p-values in parentheses).

  1. Evaluate the overall adequacy of the model using α = .01.

b. The researchers hypothesize that the rate of change of severity of tilting (y) with perceived effect of experience on tilting (x2) depends on poker experience (x1). Do you agree? Test using α = .01.

Question: The Excel printout below resulted from fitting the following model to n = 15 data points: y=β0+β1x1+β2x2+ε

Where,

x1=(1iflevel20ifnot)x2=(1iflevel30ifnot)

Question: After-death album sales. When a popular music artist dies, sales of the artist’s albums often increase dramatically. A study of the effect of after-death publicity on album sales was published in Marketing Letters (March 2016). The following data were collected weekly for each of 446 albums of artists who died a natural death: album publicity (measured as the total number of printed articles in which the album was mentioned at least once during the week), artist death status (before or after death), and album sales (dollars). Suppose you want to use the data to model weekly album sales (y) as a function of album publicity and artist death status. Do you recommend using stepwise regression to find the “best” model for predicting y? Explain. If not, outline a strategy for finding the best model.

Question: Job performance under time pressure. Time pressure is common at firms that must meet hard and fast deadlines. How do employees working in teams perform when they perceive time pressure? And, can this performance improve with a strong team leader? These were the research questions of interest in a study published in the Academy of Management Journal (October, 2015). Data were collected on n = 139 project teams working for a software company in India. Among the many variables recorded were team performance (y, measured on a 7-point scale), perceived time pressure (, measured on a 7-point scale), and whether or not the team had a strong and effective team leader (x2 = 1 if yes, 0 if no). The researchers hypothesized a curvilinear relationship between team performance (y) and perceived time pressure (), with different-shaped curves depending on whether or not the team had an effective leader (x2). A model for E(y) that supports this theory is the complete second-order model:E(y)=β0+β1x1+β2x12+β3x2+β4x1x2+β5x12x2

a. Write the equation for E(y) as a function of x1 when the team leader is not effective (x2= 0).

b. Write the equation for E(y) as a function ofwhen the team leader is effective (x2= 1).

c. The researchers reported the following b-estimates:.

β0^=4.5,β1^=0.13,β3^=0.15,β4^=0.15andβ5^=0.29Use these estimates to sketch the two equations, parts a and b. What is the nature of the curvilinear relationship when the team leaders is not effective? Effective?

Explain why stepwise regression is used. What is its value in the model-building process?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free