Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Job performance under time pressure. Time pressure is common at firms that must meet hard and fast deadlines. How do employees working in teams perform when they perceive time pressure? And, can this performance improve with a strong team leader? These were the research questions of interest in a study published in the Academy of Management Journal (October, 2015). Data were collected on n = 139 project teams working for a software company in India. Among the many variables recorded were team performance (y, measured on a 7-point scale), perceived time pressure (, measured on a 7-point scale), and whether or not the team had a strong and effective team leader (x2 = 1 if yes, 0 if no). The researchers hypothesized a curvilinear relationship between team performance (y) and perceived time pressure (), with different-shaped curves depending on whether or not the team had an effective leader (x2). A model for E(y) that supports this theory is the complete second-order model:E(y)=β0+β1x1+β2x12+β3x2+β4x1x2+β5x12x2

a. Write the equation for E(y) as a function of x1 when the team leader is not effective (x2= 0).

b. Write the equation for E(y) as a function ofwhen the team leader is effective (x2= 1).

c. The researchers reported the following b-estimates:.

β0^=4.5,β1^=0.13,β3^=0.15,β4^=0.15andβ5^=0.29Use these estimates to sketch the two equations, parts a and b. What is the nature of the curvilinear relationship when the team leaders is not effective? Effective?

Short Answer

Expert verified

Answer

  1. When x2= 0, the equation of E(y) can be written asE(y)=β0+β1x1+β2x12
  2. Whenx2= 1, the equation of E(y) can be written asE(y)=(β0+β3)+(β1+β4)x1+(β2+β5)x12
  3. The curvilinear relationship changes when team leaders are effective and not effective. When the team leaders are effective, there is a downward sloping curve observed meaning that there is a negative relationship between team performance and effectiveness of team leader. While when the team leaders are not effective, there is an upward sloping curve observed indicating positive relationship between team performance and team leader not being effective.

Step by step solution

01

Equation for E(y)

When x2= 0, the equation of E(y) can be written as

E(y)=β0+β1x1+β2x12+β3x2+β4x1x2+β5x12x2E(y)=β0+β1x1+β2x12+β3(0)+β4x1(0)+β5x12(0)E(y)=β0+β1x1+β2x12

02

Calculation for E(y)

Whenx2= 1, the equation of E(y) can be written as

E(y)=β0+β1x1+β2x12+β3x2+β4x1x2+β5x12x2E(y)=β0+β1x1+β2x12+β3(1)+β4x1(1)+β5x12(1)E(y)=(β0+β3)+(β1+β4)x1+(β2+β5)x12

03

Graph

When x2= 0, the equation of E(y) can be written asE(y)=4.5-0.13x1-0.17x12.

Whenx2 = 1, the equation of E(y) can be written asE(y)=4.65+0.02x1-0.12x12

The curvilinear relationship changes when team leaders are effective and not effective. When the team leaders are effective, there is a downward sloping curve observed meaning that there is a negative relationship between team performance and effectiveness of team leader.

While when the team leaders are not effective, there is an upward sloping curve observed indicating positive relationship between team performance and team leader not being effective.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Reality TV and cosmetic surgery. Refer to the Body Image: An International Journal of Research (March 2010) study of the impact of reality TV shows on one’s desire to undergo cosmetic surgery, Exercise 12.17 (p. 725). Recall that psychologists used multiple regression to model desire to have cosmetic surgery (y) as a function of gender(x1) , self-esteem(x2) , body satisfaction(x3) , and impression of reality TV (x4). The SPSS printout below shows a confidence interval for E(y) for each of the first five students in the study.

  1. Interpret the confidence interval for E(y) for student 1.
  2. Interpret the confidence interval for E(y) for student 4

Question: Write a first-order model relating to

  1. Two quantitative independent variables.
  2. Four quantitative independent variables.
  3. Five quantitative independent variables.

Role of retailer interest on shopping behavior. Retail interest is defined by marketers as the level of interest a consumer has in a given retail store. Marketing professors investigated the role of retailer interest in consumers’ shopping behavior (Journal of Retailing, Summer 2006). Using survey data collected for n = 375 consumers, the professors developed an interaction model for y = willingness of the consumer to shop at a retailer’s store in the future (called repatronage intentions) as a function of = consumer satisfaction and = retailer interest. The regression results are shown below.

(a) Is the overall model statistically useful for predicting y? Test using a=0.05

(b )Conduct a test for interaction at a= 0.05.

(c) Use the estimates to sketch the estimated relationship between repatronage intentions (y) and satisfaction when retailer interest is x2=1 (a low value).

(d)Repeat part c when retailer interest is x2= 7(a high value).

(e) Sketch the two lines, parts c and d, on the same graph to illustrate the nature of the interaction.

Question: Revenues of popular movies. The Internet Movie Database (www.imdb.com) monitors the gross revenues for all major motion pictures. The table on the next page gives both the domestic (United States and Canada) and international gross revenues for a sample of 25 popular movies.

  1. Write a first-order model for foreign gross revenues (y) as a function of domestic gross revenues (x).
  2. Write a second-order model for international gross revenues y as a function of domestic gross revenues x.
  3. Construct a scatterplot for these data. Which of the models from parts a and b appears to be the better choice for explaining the variation in foreign gross revenues?
  4. Fit the model of part b to the data and investigate its usefulness. Is there evidence of a curvilinear relationship between international and domestic gross revenues? Try usingα=0.05.
  5. Based on your analysis in part d, which of the models from parts a and b better explains the variation in international gross revenues? Compare your answer with your preliminary conclusion from part c.

Suppose you fit the second-order model y=β0+β1x+β2x2+εto n = 25 data points. Your estimate ofβ2isβ^2= 0.47, and the estimated standard error of the estimate is 0.15.

  1. TestH0:β2=0againstHa:β20. Useα=0.05.
  2. Suppose you want to determine only whether the quadratic curve opens upward; that is, as x increases, the slope of the curve increases. Give the test statistic and the rejection region for the test forα=0.05. Do the data support the theory that the slope of the curve increases as x increases? Explain.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free